In: Statistics and Probability
A 2016 poll sampled 523 adults who were planning a vacation during the next six months and found that 141 were expected to travel by airplane. A similar survey question in 2019 found that of 477 adults who were planning a vacation in the next six months, 81 were expecting to travel by airplane.
(i) Express in words for this study, what is meant by the probability of making a Type I and a Type II error.
(ii) Use the p-value method to test for a significant difference. Assume a significance level of 1%. Write the null and alternative hypotheses.
(iii) Repeat part (ii) using the critical value method.
(iv) Repeat part (ii) using the confidence interval approach.
1)
Type 1 error:
A type I error is the probability rejection of a true null hypothesis.
Type2 error:
A type II error is the probability of non-rejection of a false null hypothesis.
2)
Ho:   p1 - p2 =   0  
       
Ha:   p1 - p2 ╪   0  
       
          
       
sample #1   ----->  
experimental      
   
first sample size,     n1=  
523          
number of successes, sample 1 =     x1=  
141          
proportion success of sample 1 , p̂1=  
x1/n1=   0.2696      
   
          
       
sample #2   ----->   standard  
       
second sample size,     n2 =   
477          
number of successes, sample 2 =     x2 =
   81      
   
proportion success of sample 1 , p̂ 2=   x2/n2 =
   0.170      
   
          
       
difference in sample proportions, p̂1 - p̂2 =    
0.2696   -   0.1698   =  
0.0998
          
       
pooled proportion , p =   (x1+x2)/(n1+n2)=  
0.2220          
          
       
std error ,SE =    =SQRT(p*(1-p)*(1/n1+
1/n2)=   0.0263      
   
Z-statistic = (p̂1 - p̂2)/SE = (   0.100  
/   0.0263   ) =   3.7924
          
       
  
p-value =        0.000149176  
[excel formula =2*NORMSDIST(z)]  
   
decision :    p-value<α,Reject null hypothesis
  
3)
Ho:   p1 - p2 =   0  
       
Ha:   p1 - p2 ╪   0  
       
          
       
sample #1   ----->   
first sample size,     n1=  
523          
number of successes, sample 1 =     x1=  
141          
proportion success of sample 1 , p̂1=  
x1/n1=   0.2696      
   
          
       
sample #2   ----->   
second sample size,     n2 =   
477          
number of successes, sample 2 =     x2 =
   81      
   
proportion success of sample 1 , p̂ 2=   x2/n2 =
   0.170      
   
          
       
difference in sample proportions, p̂1 - p̂2 =    
0.2696   -   0.1698   =  
0.0998
          
       
pooled proportion , p =   (x1+x2)/(n1+n2)=  
0.2220          
          
       
std error ,SE =    =SQRT(p*(1-p)*(1/n1+
1/n2)=   0.0263      
   
Z-statistic = (p̂1 - p̂2)/SE = (   0.100  
/   0.0263   ) =   3.7924
          
       
z-critical value , Z* =       
2.5758   [excel formula =NORMSINV(α/2)]  
   
decision :    z stats>Z critical,Reject null
hypothesis
4)
level of significance, α =   0.01  
           
Z critical value =   Z α/2 =   
2.576   [excel function: =normsinv(α/2)  
   
          
       
Std error , SE =    SQRT(p̂1 * (1 - p̂1)/n1 + p̂2 *
(1-p̂2)/n2) =     0.0259  
       
margin of error , E = Z*SE =    2.576  
*   0.0259   =   0.0668
          
       
confidence interval is       
           
lower limit = (p̂1 - p̂2) - E =    0.100  
-   0.0668   =   0.0330
upper limit = (p̂1 - p̂2) + E =    0.100  
+   0.0668   =   0.1666
          
       
so, confidence interval is (   0.0330   < p1
- p2 <   0.1666   )  
Since it does not contain zero value.
Thanks in advance!
revert back for doubt
Please upvote