In: Statistics and Probability
Given are five observations for two variables, x and y. (Round your answers to two decimal places.)
xi |
3 | 12 | 6 | 20 | 14 |
---|---|---|---|---|---|
yi |
55 | 40 | 55 | 10 | 15 |
(a)
Estimate the standard deviation of
ŷ*
when
x = 10.
(b)
Develop a 95% confidence interval for the expected value of y when
x = 10.
to
(c)
Estimate the standard deviation of an individual value of y when
x = 10.
(d)
Develop a 95% prediction interval for y when
x = 10.
------- to ---------
Answer:
Given,
x | y | (x-xbar)^2 | (y-ybar)^2 | (x-xbar)(y-ybar) | |
1 | 3 | 55 | 64 | 400 | -150 |
2 | 12 | 40 | 1000 | -25 | 5 |
3 | 6 | 55 | 25 | 400 | -100 |
4 | 20 | 10 | 81 | 625 | -225 |
5 | 14 | 15 | 9 | 400 | -60 |
Total | 55 | 175 | 180 | 1850 | -540 |
Mean | 11 | 35 | SSX | SSY | SXY |
Slope = -3.0000
Intercept = 68.0000
sample n = 5
SST = 1850
SSE = 230
SSR =1620
a)
Standard error of the confidence interval = s*sqrt(1 / n+(x - xbar)^2/Sxx)
substituting values & the we get
= 3.97
b)
Here for 95% confidence interval
alpha = 0.05
degree of freedom = 3
t(alpha/2 , df) = t(0.05/2 , 3) = 3.182
CI = x +/- t*standard error
substitute values & then we get
= (25.37 , 50.63)
c)
Standard error of prediction interval = s*sqrt(1 + 1/n+(x-xbar)^2/Sxx)
substitute values & then we get
= 9.61
d)
Now for 95 % confidence interval & -2 degree of freedom
Corresponding critical t value = 3.182
95% prediction interval = x +/- t*standard error
substitute values & then we get
= (7.41 , 68.59)