In: Statistics and Probability
Given are five observations for two variables, x and
y.
x i | 1 | 2 | 3 | 4 | 5 |
y i | 4 | 7 | 5 | 12 | 13 |
Round your answers to two decimal places.
A)
Using the following equation:
Estimate the standard deviation of ŷ* when x = 3.
B)
Using the following expression:
Develop a 95% confidence interval for the expected value of y when x = 3. _______to___________
C)
Using the following equation:
Estimate the standard deviation of an individual value of y when x = 3.
D)
Using the following expression:
Develop a 95% prediction interval for y when x = 3. If your answer is negative, enter minus (-) sign. ________to_________
predicted val=1.3+6*2.3= | 15.1000 |
SSE =Syy-(Sxy)2/Sxx= | 13.900 |
s2 =SSE/(n-2)= | 4.6333 | |
std error σ = | =se =√s2= | 2.1525 |
A)
std error of CI=s*√(1/n+(x0-x̅)2/Sxx)= | 0.96 |
B)
for 95 % CI value of t= | 3.182 | |
margin of error E=t*std error= | 3.064 | |
lower confidence bound=xo-E= | 5.14 | |
Upper confidence bound=xo+E= | 11.26 |
95% confidence interval for the expected value =(5.14 , 11.26)
C)
std error of PI=s*√(1+1/n+(x0-x̅)2/Sxx)= | 2.36 |
D)
for 95 % CI value of t= | 3.182 | |
margin of error E=t*std error= | 7.504 | |
lower confidence bound=xo-E= | 0.70 | |
Upper confidence bound=xo+E= | 15.70 |
95% prediction interval for y =(0.70 , 15.70)