In: Statistics and Probability
Given are five observations for two variables, x and y. (Round your answers to two decimal places.)
xi |
3 | 12 | 6 | 20 | 14 |
---|---|---|---|---|---|
yi |
55 | 40 | 55 | 10 | 15 |
(a)
Estimate the standard deviation of
ŷ*
when
x = 10.
(b)
Develop a 95% confidence interval for the expected value of y when
x = 10.
to
(c)
Estimate the standard deviation of an individual value of y when
x = 10.
(d)
Develop a 95% prediction interval for y when
x = 10.
to
Answer:
X | Y | ||||
1 | 3 | 55 | 64.0000 | 400.00 | -150.0000 |
2 | 12 | 40 | 10000 | -25.00 | 5.0000 |
3 | 6 | 55 | 25.0000 |
400.00 |
-100.0000 |
4 | 20 | 10 | 81.0000 | 625.00 | -225.0000 |
5 | 14 | 15 | 9.0000 | 400.00 | -60.0000 |
Total | 55 | 175 | 180.0000 | 1850.00 | -540.0000 |
Mean | 11.000 | 35.000 | SSX | SSY | SXY |
Slope = -3.0000
Intercept = 68.0000
n = 5
SST = 1850.00
SSE = 230.00
SSR=1620.00
a)
std error of confidence interval = s*√(1/n+(x0-x̅)2/Sxx)=
3.9698~3.97
b)
for 95 % confidence and 3degree of freedom critical t= 3.1820
95% confidence interval =xo -/+ t*standard error=
(25.37,50.63)
c)
std error of prediction interval=s*√(1+1/n+(x0-x̅)2/Sxx)= 9.6138~
9.61
d)
for 95 % confidence and -2degree of freedom critical t=
3.1820
95% prediction interval =xo -/+ t*standard error= (7.41,68.59)