In: Statistics and Probability
1. Given are five observations for two variables, x and
y.
Round your answers to two decimal places. a. Using the following equation: Estimate the standard deviation of ŷ* when x = 3. b. Using the following expression: Develop a 95% confidence interval for the expected value of
y when x = 3. c. Using the following equation: Estimate the standard deviation of an individual value of y when x = 3. d. Using the following expression: Develop a 95% prediction interval for y when x
= 3. If your answer is negative, enter minus (-) sign. |
2.
he following data are the monthly salaries y and the
grade point averages x for students who obtained a
bachelor's degree in business administration.
The estimated regression equation for these data is = -859.1 + 1,409.1x and MSE =196,932. a. Develop a point estimate of the starting
salary for a student with a GPA of 3.0 (to 1 decimal). b. Develop a 95% confidence interval for the
mean starting salary for all students with a 3.0 GPA (to 2
decimals). c. Develop a 95% prediction interval for Ryan
Dailey, a student with a GPA of 3.0 (to 2 decimals). |
1)
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 15.00 | 40.00 | 10.00 | 76.00 | 25.00 |
mean | 3.00 | 8.00 | SSxx | SSyy | SSxy |
sample size , n = 5
here, x̅ = Σx / n= 3.000 ,
ȳ = Σy/n = 8.000
SSxx = Σ(x-x̅)² = 10.0000
SSxy= Σ(x-x̅)(y-ȳ) = 25.0
estimated slope , ß1 = SSxy/SSxx = 25.0
/ 10.000 = 2.5000
intercept, ß0 = y̅-ß1* x̄ =
0.50000
so, regression line is Ŷ =
0.50 + 2.500 *x
a)
Predicted Y at X= 3 is
Ŷ = 0.5000 +
2.5000 *3= 8.000
b)
X Value= 3
Confidence Level= 95%
Sample Size , n= 5
Degrees of Freedom,df=n-2 = 3
critical t Value=tα/2 = 3.182 [excel
function: =t.inv.2t(α/2,df) ]
X̅ = 3.00
Σ(x-x̅)² =Sxx 10.00
Standard Error of the Estimate,Se= 2.1213
Predicted Y at X= 3 is
Ŷ = 0.5000 +
2.5000 *3= 8.000
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =
0.949
margin of error,E=t*Std error=t* S(ŷ) =
3.1824 * 0.949 =
3.0191
Confidence Lower Limit=Ŷ +E =
8.000 - 3.019 =
4.981
Confidence Upper Limit=Ŷ +E = 8.000
+ 3.019 =
11.019
c)
For Individual Response Y
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =
2.324
d)
margin of error,E=t*std error=t*S(ŷ)=
3.182 * 2.324 =
7.3953
Prediction Interval Lower Limit=Ŷ -E =
8.000 - 7.395 =
0.605
Prediction Interval Upper Limit=Ŷ +E =
8.000 + 7.395 =
15.395
=================
2)
a)
Predicted Y at X= 3 is
Ŷ = -859.0909 +
1409.0909 *3= 3368.2
b)
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =
204.385
margin of error,E=t*Std error=t* S(ŷ) =
2.7764 * 204.385 =
567.4650
Confidence Lower Limit=Ŷ +E =
3368.182 - 567.465
= 2800.72
Confidence Upper Limit=Ŷ +E = 3368.182
+ 567.465 =
3935.65
c)
For Individual Response Y
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =
488.575
margin of error,E=t*std error=t*S(ŷ)=
2.776 * 488.575 =
1356.5008
Prediction Interval Lower Limit=Ŷ -E =
3368.182 - 1356.501
= 2011.68
Prediction Interval Upper Limit=Ŷ +E =
3368.182 + 1356.501
= 4724.68