Question

In: Statistics and Probability

1. Given are five observations for two variables, x and y. x i 1 2 3...

1. Given are five observations for two variables, x and y.

x i 1 2 3 4 5
y i 3 7 5 12 13

Round your answers to two decimal places.

a. Using the following equation:

Estimate the standard deviation of ŷ* when x = 3.

b. Using the following expression:

Develop a 95% confidence interval for the expected value of y when x = 3.

to

c. Using the following equation:

Estimate the standard deviation of an individual value of y when x = 3.

d. Using the following expression:

Develop a 95% prediction interval for y when x = 3. If your answer is negative, enter minus (-) sign.

to

  • Check My Work

2.

he following data are the monthly salaries y and the grade point averages x for students who obtained a bachelor's degree in business administration.

GPA Monthly Salary ($)
2.7 3,500
3.4 3,900
3.7 4,200
3.2 3,800
3.5 4,200
2.7 2,300

The estimated regression equation for these data is  = -859.1 + 1,409.1x and MSE =196,932.

a. Develop a point estimate of the starting salary for a student with a GPA of 3.0 (to 1 decimal).
$

b. Develop a 95% confidence interval for the mean starting salary for all students with a 3.0 GPA (to 2 decimals).
$ (  ,  )

c. Develop a 95% prediction interval for Ryan Dailey, a student with a GPA of 3.0 (to 2 decimals).
$ (  ,  )


Solutions

Expert Solution

1)

ΣX ΣY Σ(x-x̅)² Σ(y-ȳ)² Σ(x-x̅)(y-ȳ)
total sum 15.00 40.00 10.00 76.00 25.00
mean 3.00 8.00 SSxx SSyy SSxy

sample size ,   n =   5          
here, x̅ = Σx / n=   3.000   ,     ȳ = Σy/n =   8.000  
                  
SSxx =    Σ(x-x̅)² =    10.0000          
SSxy=   Σ(x-x̅)(y-ȳ) =   25.0          
                  
estimated slope , ß1 = SSxy/SSxx =   25.0   /   10.000   =   2.5000
                  
intercept,   ß0 = y̅-ß1* x̄ =   0.50000          
                  
so, regression line is   Ŷ =   0.50   +   2.500   *x

a)

Predicted Y at X=   3   is          
Ŷ =   0.5000   +   2.5000   *3=   8.000

b)

X Value=   3              
Confidence Level=   95%              
                  
                  
Sample Size , n=   5              
Degrees of Freedom,df=n-2 =   3              
critical t Value=tα/2 =   3.182   [excel function: =t.inv.2t(α/2,df) ]          
                  
X̅ =    3.00              
Σ(x-x̅)² =Sxx   10.00              
Standard Error of the Estimate,Se=   2.1213              
                  
Predicted Y at X=   3   is          
Ŷ =   0.5000   +   2.5000   *3=   8.000
                  
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =    0.949              
margin of error,E=t*Std error=t* S(ŷ) =   3.1824   *   0.949   =   3.0191
                  
Confidence Lower Limit=Ŷ +E =    8.000   -   3.019   =   4.981
Confidence Upper Limit=Ŷ +E =   8.000   +   3.019   =   11.019

c)

For Individual Response Y  
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =   2.324

d)

margin of error,E=t*std error=t*S(ŷ)=    3.182   *   2.324   =   7.3953
                  
Prediction Interval Lower Limit=Ŷ -E =   8.000   -   7.395   =   0.605
Prediction Interval Upper Limit=Ŷ +E =   8.000   +   7.395   =   15.395

=================

2)

a)

Predicted Y at X=   3   is          
Ŷ =   -859.0909   +   1409.0909   *3=   3368.2

b)

standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =    204.385              
margin of error,E=t*Std error=t* S(ŷ) =   2.7764   *   204.385   =   567.4650
                  
Confidence Lower Limit=Ŷ +E =    3368.182   -   567.465   =   2800.72
Confidence Upper Limit=Ŷ +E =   3368.182   +   567.465   =   3935.65

c)

For Individual Response Y                  
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =   488.575              
margin of error,E=t*std error=t*S(ŷ)=    2.776   *   488.575   =   1356.5008
                  
Prediction Interval Lower Limit=Ŷ -E =   3368.182   -   1356.501   =   2011.68
Prediction Interval Upper Limit=Ŷ +E =   3368.182   +   1356.501   =   4724.68


Related Solutions

Given are five observations for two variables, x and y. x i 1 2 3 4...
Given are five observations for two variables, x and y. x i 1 2 3 4 5 y i 4 8 6 11 14 Round your answers to two decimal places. a. Using the following equation: Estimate the standard deviation of ŷ* when x = 4. b. Using the following expression: Develop a 95% confidence interval for the expected value of y when x = 4. ____to____ c. Using the following equation: Estimate the standard deviation of an individual value...
Given are five observations for two variables, x and y. x i 1 2 3 4...
Given are five observations for two variables, x and y. x i 1 2 3 4 5 y i 4 8 6 11 14 Round your answers to two decimal places. a. Using the following equation: Estimate the standard deviation of ŷ* when x = 3. b. Using the following expression: Develop a 95% confidence interval for the expected value of y when x = 3.   to   c. Using the following equation: Estimate the standard deviation of an individual value...
Given are five observations for two variables, x and y. x i 1 2 3 4...
Given are five observations for two variables, x and y. x i 1 2 3 4 5 y i 4 8 5 11 13 Round your answers to two decimal places. a. Using the following equation: Estimate the standard deviation of ŷ* when x = 4. b. Using the following expression: Develop a 95% confidence interval for the expected value of y when x = 4. to c. Using the following equation: Estimate the standard deviation of an individual value...
Given are five observations for two variables, x and y. x i 1 2 3 4...
Given are five observations for two variables, x and y. x i 1 2 3 4 5 y i 4 7 5 12 13 Round your answers to two decimal places. A) Using the following equation: Estimate the standard deviation of ŷ* when x = 3. B) Using the following expression: Develop a 95% confidence interval for the expected value of y when x = 3. _______to___________ C)   Using the following equation: Estimate the standard deviation of an individual value...
Given are five observations for two variables, x and y. x i 1 2 3 4...
Given are five observations for two variables, x and y. x i 1 2 3 4 5 y i 4 7 6 11 13 Round your answers to two decimal places. a. Using the following equation: Estimate the standard deviation of ŷ* when x = 3. b. Using the following expression: Develop a 95% confidence interval for the expected value of y when x = 3. to c. Using the following equation: Estimate the standard deviation of an individual value...
Given are five observations for two variables, x and y. xi 1 2 3 4 5...
Given are five observations for two variables, x and y. xi 1 2 3 4 5 yi 4 7 7 11 15 The estimated regression equation for these data is ŷ = 1 + 2.6x. Compute SSE, SST, and SSR using the following equations (to 1 decimal). SSE SST SSR Compute the coefficient of determination r2 (to 3 decimals). Does this least squares line provide a good fit? Compute the sample correlation coefficient (to 4 decimals).
Given are five observations for two variables, x and y. xi 1 2 3 4 5...
Given are five observations for two variables, x and y. xi 1 2 3 4 5 yi 3 8 6 11 13 Round your answers to two decimal places. a. Using the following equation: Estimate the standard deviation of ŷ* when x = 4. b. Using the following expression: Develop a 95% confidence interval for the expected value of y when x = 4. to c. Using the following equation: Estimate the standard deviation of an individual value of y...
Given are five observations for two variables, x and y. xi 1 2 3 4 5...
Given are five observations for two variables, x and y. xi 1 2 3 4 5 yi 4 7 6 12 14 Round your answers to two decimal places. a. Using the following equation: Estimate the standard deviation of ŷ* when x = 3. b. Using the following expression: Develop a 95% confidence interval for the expected value of y when x = 3. to c. Using the following equation: Estimate the standard deviation of an individual value of y...
Given are five observations for two variables, x and y. xi 1 2 3 4 5...
Given are five observations for two variables, x and y. xi 1 2 3 4 5 yi 4 7 6 12 14 a. Using the following equation: 12.32a.jpg Estimate the standard deviation of ŷ* when x = 3. b. Using the following expression: 12.32b.jpg Develop a 95% confidence interval for the expected value of y when x = 3. c. Using the following equation: 12.32c.jpg Estimate the standard deviation of an individual value of y when x = 3. d....
1.-Given are five observations for two variables, x and y. xi 1 2 3 4 5...
1.-Given are five observations for two variables, x and y. xi 1 2 3 4 5 yi 4 7 4 10 15 (d) Develop the estimated regression equation by computing the values of b0 and b1 using b1 =(Σ(xi − x)(yi − y))/Σ(xi − x)2 and b0 =  y − b1x. (e)Use the estimated regression equation to predict the value of y when x = 2. 2.-Companies in the U.S. car rental market vary greatly in terms of the size of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT