Question

In: Biology

You can create a vesicle from the inner mitochondrial membrane that includes a functional ATP synthase...

You can create a vesicle from the inner mitochondrial membrane that includes a functional ATP synthase protein with its fully functional F0 rotor, central stalk, and F1 ATPase head. There is ATP, ADP, and Pi (inorganic phosphate) present inside and outside of the vesicle. You are allowed to mechanically spin the F0 rotor domain in the absence of protons. How would ATP levels change inside the vesicle? Briefly explain how this change occurs.

Solutions

Expert Solution

Most of the ATP synthesized in glucose metabolism is produced in mitochondria by oxidative phosphorylation. The ATP synthase is made up of F0 region which is mitochondrial inner membrane bound and F1 region which is exposed to matrix. These two regions are linked by two stalks, the F1 central stalk and the F0 peripheral stalk. ATP6, together with the c-ring forms the proton-conducting channel of the F0 region. Transport of protons across the F0 rotor module results in rotation of c-ring. The torque of the c-ring is transmitted to the catalytic head of F1 region via the gamma-subunit of the central stalk. The respiratory chain complexes pump protons across the inner membrane into intermembrane space thereby generating proton motive force. This force drives the ATP synthase to synthesize ATP. ATP synthase couples the synthesis of ATP to the transport of protons into the matrix. So when the F0 rotor domain is spinned in absence of protons, there will be no ATP synthesis as there will be no proton motive force to drive the reaction.


Related Solutions

1.In order for the electron transport chain and ATP synthase to function, the inner membrane of...
1.In order for the electron transport chain and ATP synthase to function, the inner membrane of the mitochondrion has to be impermeable to most solutes, especially ions. Why? 2.Would you expect a competitive or a noncompetitive inhibitor to be more similar to the natural substrate of an enzyme? Why?
A mitochondrial membrane complex consisting of ATP synthase, adenine nucleotide translocase (ATP-ADP translocase), and phosphate translocase...
A mitochondrial membrane complex consisting of ATP synthase, adenine nucleotide translocase (ATP-ADP translocase), and phosphate translocase functions in oxidative phosphorylation. Adenine nucleotide translocase, an antiporter located in the inner mitochondrial membrane, moves ADP into the matrix and ATP out. Phosphate translocase is also located in the inner mitochondrial membrane. It transports H ions and phosphate (H2PO4–) ions into the matrix.
The mitochondrial inner membrane is impermeable to CoA and acylCoA. However, β-oxidation occurs in the mitochondrial matrix.
The mitochondrial inner membrane is impermeable to CoA and acylCoA. However, β-oxidation occurs in the mitochondrial matrix. AcylCoA is formed in the ________, and the acyl group is transferred to ______, which can cross the inner membrane through a translocase, and the acylCoA is regenerated in the _________.
If the orientation of the mitochondrial ATP synthase were reversed so that the F1 unit were...
If the orientation of the mitochondrial ATP synthase were reversed so that the F1 unit were on the opposite side of the inner mitochondrial membrane, and assuming that nothing else is changed in the cell, what would be the consequences to the cell? Explain in details and use a diagram to support your answer
On the basis of the mitochondrial electron transport and ATP synthase inhibitors (myxothaizol, FCCP, Venturicidin, and...
On the basis of the mitochondrial electron transport and ATP synthase inhibitors (myxothaizol, FCCP, Venturicidin, and Ventruicidin + FCCP) list the effects of these on the rates (decrease activity, increase activity, no activity) of oxygen consumption and ATP synthesis in a mitochondrial suspension containing all of the metabolites needed to reduce oxygen and synthesize ATP. Explain your reasoning in each case.
Imagine a scenario is which 104 protons are pumped across the membrane of the inner mitochondrial...
Imagine a scenario is which 104 protons are pumped across the membrane of the inner mitochondrial membrane. If you assume that the glycerol-3-phosphate shuttle is used, and the overall yield of substrate-level phosphorylations is 5, Describe what role the electrons play and describe the general movement of the electrons through the electron transport chain to the final electron acceptor. (5 pts) What would the effect of adding dinitrophenol (DNP) be on the electron transport chain? Be specific. (3 pts) How...
a) Sketch a model for the electron-transport pathway in the mitochondrial inner membrane. Show the pathways...
a) Sketch a model for the electron-transport pathway in the mitochondrial inner membrane. Show the pathways of the electrons transport from the reduced forms of coenzyme in the mitochondrial electron-transport chain. What is the functional role of electron transport system in metabolism? b) What is an uncoupler or uncoupling agent? Provide an example of an uncoupling agent.
Imagine a scenario is which 52 protons are pumped across the membrane of the inner mitochondrial...
Imagine a scenario is which 52 protons are pumped across the membrane of the inner mitochondrial membrane. If you assume that the glycerol-phosphate shuttle is used, and the overall yield of substrate-level phosphorylations is 3, a. What specific starting molecule in the metabolic pathways we studied would you start with to give such a yield of pumped protons and substrate level phosphorylations? b. At what specific reactions (give the reaction, not just a “number”) in the metabolic pathways would you...
A pH gradient exists between the internal and external surfaces of the inner mitochondrial membrane of...
A pH gradient exists between the internal and external surfaces of the inner mitochondrial membrane of 1.4 pH units, where the external side is more acidic. a. If the membrane potential is 0.6 V (where the internal side is negative), what is the free energy change on transporting 1 mol of protons across the membrane from outside to inside at 298 K? b. Under standard state conditions, how many protons must be transported to provide enough free energy for the...
Diagram the ETC and ATP synthase along a membrane (keep it simple, no fancy pictures, just...
Diagram the ETC and ATP synthase along a membrane (keep it simple, no fancy pictures, just basic shapes). Show the electron path through the ETC, and show what happens with ATP synthase (the reaction it catalyzes, and how it gets the energy for that reaction).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT