Question

In: Biology

1.In order for the electron transport chain and ATP synthase to function, the inner membrane of...

1.In order for the electron transport chain and ATP synthase to function, the inner membrane of the mitochondrion has to be impermeable to most solutes, especially ions. Why?

2.Would you expect a competitive or a noncompetitive inhibitor to be more similar to the natural substrate of an enzyme? Why?

Solutions

Expert Solution

1. The inner mitochondrial membrane has to be impermeable to most of the solute specially charged ions because it is the site in mitochondria across which Proton gradient is established during electron transport chain. When electrons are transported from one electron carrier to the other, protons are also pumped from mitochondrial Matrix to intermembrane space. This results in the differential concentration of protons across inner mitochondrial membrane resulting in the formation of proton gradient. The electrochemical energy stored in Proton gradient is utilised by ATP synthase enzyme for the formation of ATP. This is called as oxidative phosphorylation.

If the inner mitochondrial membrane will not be impermeable to the ions, then Proton gradient will not be generated across the membrane and therefore ATP will not be formed.

2. Competitive inhibitor will be most similar to the substrate of an enzyme. It is because a competitive inhibitor competes for the active site of enzyme and can bind to it instead of the substrate binding to the active site. This is because the competitive inhibitor and substrate molecules are structurally similar to each other. But non-competitive inhibitor binds to the site other than the active site of enzyme and therefore is not structurally similar to the substrate molecules.

Please give a good rating.


Related Solutions

Explain how the electron transport chain is coupled to the production of ATP via ATP Synthase.
Explain how the electron transport chain is coupled to the production of ATP via ATP Synthase.
How does the electron transport chain and ATP synthase generate ATP? Where does this occur in...
How does the electron transport chain and ATP synthase generate ATP? Where does this occur in a eukaryotic cell?
On the basis of the mitochondrial electron transport and ATP synthase inhibitors (myxothaizol, FCCP, Venturicidin, and...
On the basis of the mitochondrial electron transport and ATP synthase inhibitors (myxothaizol, FCCP, Venturicidin, and Ventruicidin + FCCP) list the effects of these on the rates (decrease activity, increase activity, no activity) of oxygen consumption and ATP synthesis in a mitochondrial suspension containing all of the metabolites needed to reduce oxygen and synthesize ATP. Explain your reasoning in each case.
You can create a vesicle from the inner mitochondrial membrane that includes a functional ATP synthase...
You can create a vesicle from the inner mitochondrial membrane that includes a functional ATP synthase protein with its fully functional F0 rotor, central stalk, and F1 ATPase head. There is ATP, ADP, and Pi (inorganic phosphate) present inside and outside of the vesicle. You are allowed to mechanically spin the F0 rotor domain in the absence of protons. How would ATP levels change inside the vesicle? Briefly explain how this change occurs.
Describe how NADH and FADH2 are converted into ATP by the electron transport chain and ATP...
Describe how NADH and FADH2 are converted into ATP by the electron transport chain and ATP synthase. Describe the proteins involved, and describe the roles of H+, e-, and O2 in the process.
fill in sentences from the following list below ADP AGAINST ATP ATP SYNTHASE DOWN ELECTRON TRANSPORT...
fill in sentences from the following list below ADP AGAINST ATP ATP SYNTHASE DOWN ELECTRON TRANSPORT CHAIN ELECTRONS ER INNER NADH NADPH OUTER PHOTOSYSTEMS PROTONS RUBISCO THYLAKOID The light reactions of photosynthesis use light energy to manufacture two types of energy-rich molecules: _______ and the electron carrier ________. Photons are captured by protein complexes with embedded chlorophyll molecules and other pigments.  These complexes are known as ___________.  One of them absorbs light most efficiently at 680 nm, the other absorbs best at...
a) Sketch a model for the electron-transport pathway in the mitochondrial inner membrane. Show the pathways...
a) Sketch a model for the electron-transport pathway in the mitochondrial inner membrane. Show the pathways of the electrons transport from the reduced forms of coenzyme in the mitochondrial electron-transport chain. What is the functional role of electron transport system in metabolism? b) What is an uncoupler or uncoupling agent? Provide an example of an uncoupling agent.
1. Which of components of the electron transport chain directly move protons across the inner mitochondrial...
1. Which of components of the electron transport chain directly move protons across the inner mitochondrial membrane? 2. Consider fermentation. How much ATP is generated during fermentation? How does the amount of ATP generated by fermentation compare to aerobic respiration? In humans, why can't fermentation sustain life? (Hint: Think of two reasons—one is related to the product of fermentation and what happens if it accumulates.) 3. Given this segment of a double-stranded DNA molecule, draw the two major steps involved...
Explain how the electron transport chain functions to generate ATP in terms of electron carriers, oxygen...
Explain how the electron transport chain functions to generate ATP in terms of electron carriers, oxygen as the electron acceptor, the four inner membrane proteins, the hydrogen concentration gradient, water and ATP synthase.
The Electron Transport Chain creates potential energy by pushing protons to one side of the membrane,...
The Electron Transport Chain creates potential energy by pushing protons to one side of the membrane, increasing the concentration on that side. What eventually happens to that energy? Explain in detail.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT