Question

In: Statistics and Probability

A standardized​ exam's scores are normally distributed. In a recent​ year, the mean test score was...

A standardized​ exam's scores are normally distributed. In a recent​ year, the mean test score was 21.4 and the standard deviation was 5.4. The test scores of four students selected at random are 15​, 22​, 9​, and 36. Find the​ z-scores that correspond to each value and determine whether any of the values are unusual.

The z-score for 15 is:

Solutions

Expert Solution

A standardized​ exam's scores are normally distributed. In a recent​ year, the mean test score was 21.4 and the standard deviation was 5.4. The test scores of four students selected at random are 15​, 22​, 9​, and 36. Find the​ z-scores that correspond to each value and determine whether any of the values are unusual.

Answer :

We have given :

μ = population mean = 21.4

σ = population standard deviation = 5.4

We have to find z score for four students selected at random and check it is unusual or not .

## if z score value is below - 3 or  above + 3 then it is unusual .

z score = ( x - mean ) / standard deviation

## The z-score for 15 is :

z = ( 15 - 21.4 ) / 5.4

= - 6.4 / 5.4

= - 1. 1852 ( it is usual , because its value is not below - 3 )

## The z-score for 22  is:

z = ( 22 - 21.4 ) / 5.4

= 0.6  / 5.4

= 0.1111 ( it is usual , because its value is not above   3 )

## The z-score for 9   is:

z = ( 9   - 21.4 ) / 5.4

= - 12.4   / 5.4

= - 2.2963   ( it is usual , because its value is not below - 3 )

## The z-score for 36 is:

z = ( 36 - 21.4 ) / 5.4

= 14.6 / 5.4

= 2.7037 ( it is usual , because its value is not above 3 )

( Here all the z scores value is between -3 to 3 hence there is no unusual value )  


Related Solutions

A standardized​ exam's scores are normally distributed. In a recent​ year, the mean test score was...
A standardized​ exam's scores are normally distributed. In a recent​ year, the mean test score was 1507 and the standard deviation was 315. The test scores of four students selected at random are 1900​, 1260​, 2220​, and 1390. Find the​ z-scores that correspond to each value and determine whether any of the values are unusual. The​ z-score for 1900 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 1260 is nothing. ​(Round to two decimal places as​...
In a recent​ year, the total scores for a certain standardized test were normally​ distributed, with...
In a recent​ year, the total scores for a certain standardized test were normally​ distributed, with a mean of 500 and a standard deviation of 10.5. Answer parts ​(a)dash​(d) below. ​(a) Find the probability that a randomly selected medical student who took the test had a total score that was less than 489. The probability that a randomly selected medical student who took the test had a total score that was less than 489 is . 1474. ​(Round to four...
The scores on a standardized test are normally distributed with a mean of 95 and standard...
The scores on a standardized test are normally distributed with a mean of 95 and standard deviation of 20. What test score is 0.5 standard deviations above the mean?
Scores of a standardized test are approximately normally distributed with a mean of 85 and a...
Scores of a standardized test are approximately normally distributed with a mean of 85 and a standard deviation of 5.5. (a) What proportion of the scores is above 90? (b) What is the 25th percentile of the scores? (c) If a score is 94, what percentile is it on?
Suppose that the scores on a statewide standardized test are normally distributed with a mean of...
Suppose that the scores on a statewide standardized test are normally distributed with a mean of 75 and a standard deviation of 2. Estimate the percentage of scores that were (a) between 73 and 77. % (b) above 79. % (c) below 73. % (d) between 69 and 79. %
In recent years, the total scores for a certain standardized test were normally distributed, with a...
In recent years, the total scores for a certain standardized test were normally distributed, with a mean of 500 and a standard deviation of 10.3 Answer parts A-D below. Round to four decimal places as needed. Find the probability that a randomly selected medical student who took the test has a total score that was less than 493. The probability that randomly selected medical student who took the test had a total score that was less than 493 is [____]...
Scores for a common standardized college aptitude test are normally distributed with a mean of 481...
Scores for a common standardized college aptitude test are normally distributed with a mean of 481 and a standard deviation of 108. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect. If 1 of the men is randomly selected, find the probability that his score is at least 537.1. P(X > 537.1) = Enter your answer as a number accurate to 4 decimal places. NOTE:...
Scores for a common standardized college aptitude test are normally distributed with a mean of 512...
Scores for a common standardized college aptitude test are normally distributed with a mean of 512 and a standard deviation of 111. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect. If 1 of the men is randomly selected, find the probability that his score is at least 591.7. P(X > 591.7) = Enter your answer as a number accurate to 4 decimal places. If...
Scores for a common standardized college aptitude test are normally distributed with a mean of 514...
Scores for a common standardized college aptitude test are normally distributed with a mean of 514 and a standard deviation of 97. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect. If 1 of the men is randomly selected, find the probability that his score is at least 555.2. P(X > 555.2) = Enter your answer as a number accurate to 4 decimal places. NOTE:...
Scores for a common standardized college aptitude test are normally distributed with a mean of 496...
Scores for a common standardized college aptitude test are normally distributed with a mean of 496 and a standard deviation of 101. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect. If 1 of the men is randomly selected, find the probability that his score is at least 547.1. P(X > 547.1) = (Enter your answer as a number accurate to 4 decimal places) If...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT