Question

In: Statistics and Probability

Scores for a common standardized college aptitude test are normally distributed with a mean of 514...

Scores for a common standardized college aptitude test are normally distributed with a mean of 514 and a standard deviation of 97. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect.

If 1 of the men is randomly selected, find the probability that his score is at least 555.2.
P(X > 555.2) =
Enter your answer as a number accurate to 4 decimal places. NOTE: Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.

If 16 of the men are randomly selected, find the probability that their mean score is at least 555.2.
P(M > 555.2) =
Enter your answer as a number accurate to 4 decimal places. NOTE: Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.

Solutions

Expert Solution

Solution :

Given that ,

mean = = 514

standard deviation = = 97

a) P(x > 555.2) = 1 - p( x< 555.2)

=1- p P[(x - ) / < (555.2 - 514) / 97 ]

=1- P(z < 0.425)

Using z table,

= 1 - 0.6646

= 0.3354

b) n = 16

=   = 514

= / n = 97 / 16 = 24.25

P(M > 555.2) = 1 - P(M < 555.2)

= 1 - P[(M - ) / < (555.2 - 514) / 24.25]

= 1 - P(z < 1.699)

Using z table,    

= 1 - 0.9553

= 0.0447


Related Solutions

Scores for a common standardized college aptitude test are normally distributed with a mean of 481...
Scores for a common standardized college aptitude test are normally distributed with a mean of 481 and a standard deviation of 108. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect. If 1 of the men is randomly selected, find the probability that his score is at least 537.1. P(X > 537.1) = Enter your answer as a number accurate to 4 decimal places. NOTE:...
Scores for a common standardized college aptitude test are normally distributed with a mean of 512...
Scores for a common standardized college aptitude test are normally distributed with a mean of 512 and a standard deviation of 111. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect. If 1 of the men is randomly selected, find the probability that his score is at least 591.7. P(X > 591.7) = Enter your answer as a number accurate to 4 decimal places. If...
Scores for a common standardized college aptitude test are normally distributed with a mean of 496...
Scores for a common standardized college aptitude test are normally distributed with a mean of 496 and a standard deviation of 101. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect. If 1 of the men is randomly selected, find the probability that his score is at least 547.1. P(X > 547.1) = (Enter your answer as a number accurate to 4 decimal places) If...
1) Scores for a common standardized college aptitude test are normally distributed with a mean of...
1) Scores for a common standardized college aptitude test are normally distributed with a mean of 495 and a standard deviation of 108. Randomly selected men are given a Test Preparation Course before taking this test. Assume, for sake of argument, that the preparation course has no effect. If 1 of the men is randomly selected, find the probability that his score is at least 551.9. P(X > 551.9) =   Enter your answer as a number accurate to 4 decimal...
Scores for a common standardized college aptitude test are normally distributed with a mean of 482...
Scores for a common standardized college aptitude test are normally distributed with a mean of 482 and a standard deviation of 106. Randomly selected men are given a Prepartion Course before taking this test. Assume, for sake of argument, that the Preparation Course has no effect on people's test scores. If 1 of the men is randomly selected, find the probability that his score is at least 544.3. P(X > 544.3) = Enter your answer as a number accurate to...
Scores for a common standardized college aptitude test are normally distributed with a mean of 515 and a standard deviation of 113.
Scores for a common standardized college aptitude test are normally distributed with a mean of 515 and a standard deviation of 113. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect.A. If 1 of the men is randomly selected, find the probability that his score is at least 584.2.P(X > 584.2) =  Round to 4 decimal places.NOTE: Answers obtained using exact z-scores or z-scores rounded to...
The scores on a standardized test are normally distributed with a mean of 95 and standard...
The scores on a standardized test are normally distributed with a mean of 95 and standard deviation of 20. What test score is 0.5 standard deviations above the mean?
Scores of a standardized test are approximately normally distributed with a mean of 85 and a...
Scores of a standardized test are approximately normally distributed with a mean of 85 and a standard deviation of 5.5. (a) What proportion of the scores is above 90? (b) What is the 25th percentile of the scores? (c) If a score is 94, what percentile is it on?
Suppose that the scores on a statewide standardized test are normally distributed with a mean of...
Suppose that the scores on a statewide standardized test are normally distributed with a mean of 75 and a standard deviation of 2. Estimate the percentage of scores that were (a) between 73 and 77. % (b) above 79. % (c) below 73. % (d) between 69 and 79. %
A standardized​ exam's scores are normally distributed. In a recent​ year, the mean test score was...
A standardized​ exam's scores are normally distributed. In a recent​ year, the mean test score was 21.4 and the standard deviation was 5.4. The test scores of four students selected at random are 15​, 22​, 9​, and 36. Find the​ z-scores that correspond to each value and determine whether any of the values are unusual. The z-score for 15 is:
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT