Question

In: Statistics and Probability

Let X be a binomial random variable with parameters n = 5 and p = 0.6....

Let X be a binomial random variable with parameters n = 5 and p = 0.6.

a) What is P(X ≥ 1)?

b) What is the mean of X?

c) What is the standard deviation of X? (Show work)

Solutions

Expert Solution

Solution:

a)

By using excel,

P(X 1 ) = 1 - P(X < 1 )

=1- BINOM.DIST(1,5,0.6,TRUE)

= 1 - 0.0870

Probability = 0.9130

b)

Mean = = n*P = 5 * 0.6 = 3

c)

Standard deviation = =n*p*(1-p) = 1.2 = 1.0954


Related Solutions

(a) Let X be a binomial random variable with parameters (n, p). Let Y be a...
(a) Let X be a binomial random variable with parameters (n, p). Let Y be a binomial random variable with parameters (m, p). What is the pdf of the random variable Z=X+Y? (b) Let X and Y be indpenednet random variables. Let Z=X+Y. What is the moment generating function for Z in terms of those for X and Y? Confirm your answer to the previous problem (a) via moment generating functions.
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. (a) What are the possible values for (X, Y ) pairs. (b) Derive the joint probability distribution function for X and Y. Make sure to explain your steps. (c) Using the joint pdf function of X and Y, form...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. What are the possible values for (X, Y ) pairs. Derive the joint probability distribution function for X and Y. Make sure to explain your steps. Using the joint pdf function of X and Y, form the summation /integration...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. What are the possible values for (X, Y ) pairs. Derive the joint probability distribution function for X and Y. Make sure to explain your steps. Using the joint pdf function of X and Y, form the summation /integration...
The p.d.f of the binomial distribution random variable X with parameters n and p is f(x)...
The p.d.f of the binomial distribution random variable X with parameters n and p is f(x) = n x p x (1 − p) n−x x = 0, 1, 2, ..., n 0 Otherwise Show that a) Pn x=0 f(x) = 1 [10 Marks] b) the MGF of X is given by [(1 − p) + pet ] n . Hence or otherwise show that E[X]=np and var(X)=np(1-p).
Let X be a binomial random variable with n = 11 and p = 0.3. Find...
Let X be a binomial random variable with n = 11 and p = 0.3. Find the following values. (Round your answers to three decimal places.) (a)     P(X = 5) (b)     P(X ≥ 5) (c)     P(X > 5) (d)     P(X ≤ 5) (e)     μ = np μ = (f)    σ = npq σ =
Suppose that x is a binomial random variable with n = 5, p = .66, and...
Suppose that x is a binomial random variable with n = 5, p = .66, and q = .34. (b) For each value of x, calculate p(x). (Round final answers to 4 decimal places.) p(0) = p(1)= p(2)= p(3)= p(4)= p(5) (c) Find P(x = 3). (Round final answer to 4 decimal places.) (d) Find P(x ≤ 3). (Do not round intermediate calculations. Round final answer to 4 decimal places.) (e) Find P(x < 3). (Do not round intermediate calculations....
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X =...
Let x be a binomial random variable with n=7 and p=0.7. Find the following. P(X = 4) P(X < 5) P(X ≥ 4)
A binomial random variable with parameters n and p represents the number of successes in n...
A binomial random variable with parameters n and p represents the number of successes in n independent trials. We can obtain a binomial random variable by generating n uniform random numbers 1 2 n U ,U ,...,U and letting X be the number of i U that are less than or equal to p. (a) Write a MATLAB function to implement this algorithm and name the function gsbinrnd. You may use the for loop to generate random numbers. (b) Use...
Suppose that X is a binomial random variable with parameters n=20 and p=0.7. Choose a wrong...
Suppose that X is a binomial random variable with parameters n=20 and p=0.7. Choose a wrong statement about the random variable X. a. The maximum possible value of X is 20. b. The minimum possible value of X is 0. c. The variance of X is 4.2. d. The expected value of X is 14. e. Pr(X = 19)+ Pr(X = 1)= 1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT