In: Math
If x is a binomial random variable, compute P(x) for each of the following cases:
(a) P(x≤5),n=9,p=0.7P(x≤5),n=9,p=0.7
(b) P(x>1),n=9,p=0.1P(x>1),n=9,p=0.1
(c) P(x<3),n=5,p=0.6P(x<3),n=5,p=0.6
(d) P(x≥1),n=6,p=0.9P(x≥1),n=6,p=0.9
Solution
Given that ,
a) p = 0.7
1 - p = 1 - 0.7 = 0.3
n = 9
Using binomial probability formula ,
P(X x) = (n C x) * px * (1 - p)n - x
P(X 5 ) = (9C 5) * 0.75 * (0.3)4
= 0.270340
Probability = 0.2703
b) p = 0.1
1 - p = 1 - 0.1 = 0.9
n = 9
Using binomial probability formula ,
P(X > x) = (n C x) * px * (1 - p)n - x
P(X > 1 ) = (9C 1) * 0.11 * (0.9)8
= 0.225159
Probability = 0.2252
c) p = 0.6
1 - p = 1 - 0.6 = 0.4
n = 5
Using binomial probability formula ,
P(X < x) = (n C x) * px * (1 - p)n - x
P(X < 3 ) = (5C 3) * 0.63 * (0.4)2
= 0.31744
Probability = 0.3174
d) p = 0.9
1 - p = 1 - 0.9 = 0.1
n = 6
Using binomial probability formula ,
P(X x) = (n C x) * px * (1 - p)n - x
P(X 1 ) = (6 C 1) * 0.91 * (0.1)5
= 0.9999
Probability = 0.9999