Question

In: Advanced Math

Let G and H be groups. Define the direct product G X H = {(x,y) |...

Let G and H be groups. Define the direct product

G X H = {(x,y) | x ∈ G and y ∈H }

Prove that G X H itself is a group.

Solutions

Expert Solution

Please feel free to ask any query in the comment box and don't forget to rate if you like.


Related Solutions

Direct product of groups: Let (G, ∗G) and (H, ∗H) be groups, with identity elements eG...
Direct product of groups: Let (G, ∗G) and (H, ∗H) be groups, with identity elements eG and eH, respectively. Let g be any element of G, and h any element of H. (a) Show that the set G × H has a natural group structure under the operation (∗G, ∗H). What is the identity element of G × H with this structure? What is the inverse of the element (g, h) ∈ G × H? (b) Show that the map...
Let G, H be groups and define the relation ∼= where G ∼= H if there...
Let G, H be groups and define the relation ∼= where G ∼= H if there is an isomorphism ϕ : G → H. (i) Show that the relation ∼= is an equivalence relation on the set of all groups. (ii) Give an example of two different groups that are related.
Let G, H, K be groups. Prove that if G ≅ H and H ≅ K...
Let G, H, K be groups. Prove that if G ≅ H and H ≅ K then G ≅ K.
Example 3.5: Again let X = Y = R. Define g by g(x) = x2. The...
Example 3.5: Again let X = Y = R. Define g by g(x) = x2. The graph of this function has the familiar parabolic shape as in Figure 3.1(b). Then for example, g([0, 1]) = [0, 1], g([1, 2]) = [1, 4], g({−1, 1}) = {1}, g−1([0, 1]) = [−1, 1], g−1([1, 2]) = [− √ 2, −1]∪[1, √ 2], g−1([0, ∞)) = R. *I need help understanding why each example in bold is the answer it is* *Please explain...
Let A and B be groups, and consider the product group G=A x B. (a) Prove...
Let A and B be groups, and consider the product group G=A x B. (a) Prove that N={(ea,b) E A x B| b E B} is a subgroup. (b) Prove that N is isomorphic to B (c) Prove that N is a normal subgroup of G (d) Prove that G|N is isomorphic to A
Let G be an abelian group. (a) If H = {x ∈ G| |x| is odd},...
Let G be an abelian group. (a) If H = {x ∈ G| |x| is odd}, prove that H is a subgroup of G. (b) If K = {x ∈ G| |x| = 1 or is even}, must K be a subgroup of G? (Give a proof or counterexample.)
Let g be the function defined by g(x) = x(x + 1). Find g(x + h)...
Let g be the function defined by g(x) = x(x + 1). Find g(x + h) − g(x − h).
5. Let X, Y and Z be sets. Let f : X ! Y and g...
5. Let X, Y and Z be sets. Let f : X ! Y and g : Y ! Z functions. (a) (3 Pts.) Show that if g f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X ! Y and g : Y ! Z such that g f is injective but g is not injective. (c) (3 Pts.) Show that if...
Let H, K be groups and α : K → Aut(H) be a homomorphism of groups....
Let H, K be groups and α : K → Aut(H) be a homomorphism of groups. Show that H oα K is the internal semidirect product of subgroups which are isomorphic to H and K, respectively
Let G = Z x Z and H = {(a, b) in Z x Z |...
Let G = Z x Z and H = {(a, b) in Z x Z | 8 divides a+b} a. Prove directly that H is a normal subgroup in G (use the fact that closed under composition and inverses) b. Prove that G/H is isomorphic to Z8. c. What is the index of [G : H]?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT