Question

In: Advanced Math

Let G, H, K be groups. Prove that if G ≅ H and H ≅ K...

Let G, H, K be groups. Prove that if G ≅ H and H ≅ K then G ≅ K.

Solutions

Expert Solution


Related Solutions

Let G be a group and H and K be normal subgroups of G. Prove that...
Let G be a group and H and K be normal subgroups of G. Prove that H ∩ K is a normal subgroup of G.
Let H, K be groups and α : K → Aut(H) be a homomorphism of groups....
Let H, K be groups and α : K → Aut(H) be a homomorphism of groups. Show that H oα K is the internal semidirect product of subgroups which are isomorphic to H and K, respectively
Let G, H be groups and define the relation ∼= where G ∼= H if there...
Let G, H be groups and define the relation ∼= where G ∼= H if there is an isomorphism ϕ : G → H. (i) Show that the relation ∼= is an equivalence relation on the set of all groups. (ii) Give an example of two different groups that are related.
Direct product of groups: Let (G, ∗G) and (H, ∗H) be groups, with identity elements eG...
Direct product of groups: Let (G, ∗G) and (H, ∗H) be groups, with identity elements eG and eH, respectively. Let g be any element of G, and h any element of H. (a) Show that the set G × H has a natural group structure under the operation (∗G, ∗H). What is the identity element of G × H with this structure? What is the inverse of the element (g, h) ∈ G × H? (b) Show that the map...
1) a) Let k ≥  2 and let G be a k-regular bipartite graph. Prove that G...
1) a) Let k ≥  2 and let G be a k-regular bipartite graph. Prove that G has no cut-edge. (Hint: Use the bipartite version of handshaking.) b) Construct a simple, connected, nonbipartite 3-regular graph with a cut-edge. (This shows that the condition “bipartite” really is necessary in (a).) 2) Let F_n be a fan graph and Let a_n = τ(F_n) where τ(F_n) is the number of spanning trees in F_n. Use deletion/contraction to prove that a_n = 3a_n-1 - a_n-2...
Let G be a group and K ⊂ G be a normal subgroup. Let H ⊂...
Let G be a group and K ⊂ G be a normal subgroup. Let H ⊂ G be a subgroup of G such that K ⊂ H Suppose that H is also a normal subgroup of G. (a) Show that H/K ⊂ G/K is a normal subgroup. (b) Show that G/H is isomorphic to (G/K)/(H/K).
Let H and K be subgroups of a group G so that for all h in...
Let H and K be subgroups of a group G so that for all h in H and k in K there is a k' in K with hk = k'h. Proposition 2.3.2 shows that HK is a group. Show that K is a normal subgroup of HK.
Let G and H be groups. Define the direct product G X H = {(x,y) |...
Let G and H be groups. Define the direct product G X H = {(x,y) | x ∈ G and y ∈H } Prove that G X H itself is a group.
(1) Let G be a group and H, K be subgroups of G. (a) Show that...
(1) Let G be a group and H, K be subgroups of G. (a) Show that if H is a normal subgroup, then HK = {xy|x ? H, y ? K} is a subgroup of G. (b) Show that if H and K are both normal subgroups, then HK is also a normal subgroup. (c) Give an example of subgroups H and K such that HK is not a subgroup of G.
Let M/F and K/F be Galois extensions with Galois groups G = Gal(M/F) and H =...
Let M/F and K/F be Galois extensions with Galois groups G = Gal(M/F) and H = Gal(K/F). Since M/F is Galois, and K/F is a field extension, we have the composite extension field K M. Show that σ → (σ|M , σ|K) is a homomorphism from Gal(K M/F) to G × H, and that it is one-to-one. [As in the notes, σ|X means the restriction of the map σ to the subset X of its domain.]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT