Question

In: Advanced Math

6) Solve the ff IPV: U(X,0) =f(X) b1) 2Ut + (X+1)2UX = 0 b2) Ut +...

6) Solve the ff IPV: U(X,0) =f(X)

b1) 2Ut + (X+1)2UX = 0

b2) Ut + Xt^2UX=0

b3)    Ut + U^2UX=0

Solutions

Expert Solution


Related Solutions

Solve the following initial value problems: a) ut+xux= -tu, x is in R, t>0; u(x,0) =f(x),...
Solve the following initial value problems: a) ut+xux= -tu, x is in R, t>0; u(x,0) =f(x), x is in R. c) ut+ux=-tu, x is in R, t>0; u(x,0)=f(x), x is in R d)2ut+ux = -2u, x,t in R, t>0; u(x,t)=f(x,t) on the straight line x = t, where f is a given function.
Please solve the following: ut=uxx, 0<x<1, t>0 u(0,t)=0, u(1,t)=A, t>0 u(x,0)=cosx, 0<x<1
Please solve the following: ut=uxx, 0<x<1, t>0 u(0,t)=0, u(1,t)=A, t>0 u(x,0)=cosx, 0<x<1
Use separation of variables to solve uxx+2uy+uyy=0, u(x, 0) = f(x), u(x, 1) = 0, u(0,...
Use separation of variables to solve uxx+2uy+uyy=0, u(x, 0) = f(x), u(x, 1) = 0, u(0, y) = 0, u(1, y) = 0.
Solve the Boundary Value Problem, PDE: Utt-a2uxx=0, 0≤x≤1, 0≤t<∞ BCs: u(0,t)=0 u(1,t)=cos(t) u(x,0)=0 ut(x,0)=0
Solve the Boundary Value Problem, PDE: Utt-a2uxx=0, 0≤x≤1, 0≤t<∞ BCs: u(0,t)=0 u(1,t)=cos(t) u(x,0)=0 ut(x,0)=0
Solve the nonhomogeneous heat equation: ut-kuxx=sinx, 0<x<pi, t>0 u(0,t)=u(pi,t)=0, t>0 u(x,0)=0, 0<x<pi
Solve the nonhomogeneous heat equation: ut-kuxx=sinx, 0<x<pi, t>0 u(0,t)=u(pi,t)=0, t>0 u(x,0)=0, 0<x<pi
1. Calculate the Transversality Conditions 2. and then solve the ff: a.)  Ux +Uy =1-U U (X,...
1. Calculate the Transversality Conditions 2. and then solve the ff: a.)  Ux +Uy =1-U U (X, X+X^2) = SIN X b) XUx + YUy= 4U with initial condition u=1 on the unit circle x^2 +y^2 =1 ( you will need to parameterize the circle in terms of parameter r).
Solve the initial value problem Utt = c^2Uxx, u(0,x)= e^-x^2 , Ut(0,x) = sin x (PDE)
Solve the initial value problem Utt = c^2Uxx, u(0,x)= e^-x^2 , Ut(0,x) = sin x (PDE)
7. Find the solution of the following PDEs: ut−16uxx =0 u(0,t) = u(2π,t) = 0 u(x,...
7. Find the solution of the following PDEs: ut−16uxx =0 u(0,t) = u(2π,t) = 0 u(x, 0) = π/2 − |x − π/2|
Suppose u(t,x)solves the initial value problem Utt = 4Uxx + sin(wt) cos(x), u(0,x)= 0 , Ut(0,x)...
Suppose u(t,x)solves the initial value problem Utt = 4Uxx + sin(wt) cos(x), u(0,x)= 0 , Ut(0,x) = 0. Is h(t) = u(t,0) a periodic function? (PDE)
Find b0, b1, and b2  to fit the second degree parabola =b0+b1 x+b2 x2 for the following...
Find b0, b1, and b2  to fit the second degree parabola =b0+b1 x+b2 x2 for the following data: x 1 2 3 4 y 1.7 1.8 2.3 3.2 b0 = -2, b1=-0.5, b2 = -0.2 b0 =2, b1= -0.5, b2 = 0.2 b0 =2, b1=0.5, b2 =0.2    b0 =2, b1=0.5, b2 = -0.2   
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT