Find the unique solution u of the parabolic boundary value
problem
Ut −Uxx =e^(−t)*sin(3x), 0<x<π, t>0,
U(0,t) = U(π,t) = 0, t > 0,
U(x, 0) = e^(π), 0 ≤ x ≤ π.
Solve the following initial value problems:
a) ut+xux= -tu, x is in R, t>0; u(x,0) =f(x), x is in R.
c) ut+ux=-tu, x is in R, t>0; u(x,0)=f(x), x is in R
d)2ut+ux = -2u, x,t in R, t>0; u(x,t)=f(x,t) on the straight
line x = t, where f is a given function.
If u(t) = < sin(8t), cos(4t), t > and v(t) = < t,
cos(4t), sin(8t) >, use the formula below to find the given
derivative.
d/(dt)[u(t)* v(t)] =
u'(t)* v(t) +
u(t)* v'(t)
d/(dt)[u(t) x v(t)] =
<.______ , _________ , _______>
If u(t) = < sin(5t),
cos(5t), t > and
v(t) = < t, cos(5t),
sin(5t) >, use the formula below to find the given
derivative.
d/dt[ u(t) * v(t)] = u'(t) * v(t) + u(t)* v'(t)
d/dt [ u(t) x v(t)] = ?