Question

In: Advanced Math

Let A ⊆ C be infinite and denote by A' the set of all the limit...

Let A ⊆ C be infinite and denote by A' the set of all the limit points of A.

Prove that if z ∈ A' then there is a non-trivial sequence of elements in A that converges to z

Solutions

Expert Solution

Let here a infinite set A is given z be the limit point of A. We want to show there exist sequence in A which convergent to z. Above images contains proof of that.


Related Solutions

Let A be an infinite set and let B ⊆ A be a subset. Prove: (a)...
Let A be an infinite set and let B ⊆ A be a subset. Prove: (a) Assume A has a denumerable subset, show that A is equivalent to a proper subset of A. (b) Show that if A is denumerable and B is infinite then B is equivalent to A.
3. We let ??(?) denote the set of all polynomials of degree at most n with...
3. We let ??(?) denote the set of all polynomials of degree at most n with real coefficients. Let ? = {? + ??3 |?, ? ??? ???? ???????}. Prove that T is a vector space using standard addition and scalar multiplication of polynomials in ?3(?).
Let Z denote the set of all integers. Give an explicit bijection f : Z →...
Let Z denote the set of all integers. Give an explicit bijection f : Z → N
c) Let R be any ring and let ??(?) be the set of all n by...
c) Let R be any ring and let ??(?) be the set of all n by n matrices. Show that ??(?) is a ring with identity under standard rules for adding and multiplying matrices. Under what conditions is ??(?) commutative?
Let R be a ring (not necessarily commutative), and let X denote the set of two-sided...
Let R be a ring (not necessarily commutative), and let X denote the set of two-sided ideals of R. (i) Show that X is a poset with respect to to set-theoretic inclusion, ⊂. (ii) Show that with respect to the operations I ∩ J and I + J (candidates for meet and join; remember that I+J consists of the set of sums, {i + j} where i ∈ I and j ∈ J) respectively, X is a lattice. (iii) Give...
Due October 25. Let R denote the set of complex numbers of the form a +...
Due October 25. Let R denote the set of complex numbers of the form a + b √ 3i, with a, b ∈ Z. Define N : R → Z≥0, by N(a + b √ 3i) = a 2 + 3b 2 . Prove: (i) R is closed under addition and multiplication. Conclude R is a ring and also an integral domain. (ii) Prove N(xy) = N(x)N(y), for all x, y ∈ R. (ii) Prove that 1, −1 are the...
Let X be a set with infinite cardinality. Define Tx = {U ⊆ X : U...
Let X be a set with infinite cardinality. Define Tx = {U ⊆ X : U = Ø or X \ U is finite}. Prove that Tx is a topology on X. (Tx is called the Cofinite Topology or Finite Complement Topology.)
Let W denote the set of English words. For u, v ∈ W, declare u ∼...
Let W denote the set of English words. For u, v ∈ W, declare u ∼ v provided that u, v have the same length and u, v have the same first letter and u, v have the same last letter. a) Prove that ∼ is an equivalence relation. b) List all elements of the equivalence class [a] c) List all elements of [ox] d) List all elements of [are] e) List all elements of [five]. Can you find more...
Let S be a set of n numbers. Let X be the set of all subsets...
Let S be a set of n numbers. Let X be the set of all subsets of S of size k, and let Y be the set of all ordered k-tuples (s1, s2,   , sk) such that s1 < s2 <    < sk. That is, X = {{s1, s2,   , sk} | si  S and all si's are distinct}, and Y = {(s1, s2,   , sk) | si  S and s1 < s2 <    < sk}. (a) Define a one-to-one correspondence f : X → Y. Explain...
Let Rx denote the group of nonzero real numbers under multiplication and let R+ denote the...
Let Rx denote the group of nonzero real numbers under multiplication and let R+ denote the group of positive real numbers under multiplication. Let H be the subgroup {1, −1} of Rx. Prove that Rx ≈ R+ ⊕ H.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT