Question

In: Advanced Math

Let Rx denote the group of nonzero real numbers under multiplication and let R+ denote the...

Let Rx denote the group of nonzero real numbers under multiplication and let R+ denote the group of positive real numbers under multiplication. Let H be the subgroup {1, −1} of Rx. Prove that Rx ≈ R+ ⊕ H.

Solutions

Expert Solution


Related Solutions

Suppose we define a relation ~ on the set of nonzero real numbers R* = R\{0}...
Suppose we define a relation ~ on the set of nonzero real numbers R* = R\{0} by for all a , b E R*, a ~ b if and only if ab>0. Prove that ~ is an equivalence relation. Find the equivalence class [8]. How many distinct equivalence classes are there?
Due October 25. Let R denote the set of complex numbers of the form a +...
Due October 25. Let R denote the set of complex numbers of the form a + b √ 3i, with a, b ∈ Z. Define N : R → Z≥0, by N(a + b √ 3i) = a 2 + 3b 2 . Prove: (i) R is closed under addition and multiplication. Conclude R is a ring and also an integral domain. (ii) Prove N(xy) = N(x)N(y), for all x, y ∈ R. (ii) Prove that 1, −1 are the...
Let S be the set of all ordered pairs of real numbers. Define scalar multiplication and...
Let S be the set of all ordered pairs of real numbers. Define scalar multiplication and addition on S by: α(x1,x2)=(αx1,αx2) (x1,x2)⊕(y1,y2)=(x1 +y1,0) We use the symbol⊕to denote the addition operation for this system in order to avoid confusion with the usual addition x+y of row vectors. Show that S, together with the ordinary scalar multiplication and the addition operation⊕, is not a vector space. Test ALL of the eight axioms and report which axioms fail to hold.
Let D10 denote the dihedral group of the hexagon. Thus, D10 is generated by r and...
Let D10 denote the dihedral group of the hexagon. Thus, D10 is generated by r and f with r10=f2=1 and fr=r-1f=r9f (a) Show that D10 has a subgroups N and M such that i. N ∼= D5 (isomorphic to D5) ii. M is a cyclic subgroup group of order 2 iii. N ∩ M = {e} iv. N and M are each normal in D10 v. Every element in g ∈ D10 is a product g = nm of elements...
Let R and S be rings. Denote the operations in R as +R and ·R and...
Let R and S be rings. Denote the operations in R as +R and ·R and the operations in S as +S and ·S (i) Prove that the cartesian product R × S is a ring, under componentwise addition and multiplication. (ii) Prove that R × S is a ring with identity if and only if R and S are both rings with identity. (iii) Prove that R × S is a commutative ring if and only if R and...
Let k ≥ 2. Use that R (the real numbers) is complete to show R^k is...
Let k ≥ 2. Use that R (the real numbers) is complete to show R^k is complete.
Let Z* denote the ring of integers with new addition and multiplication operations defined by a...
Let Z* denote the ring of integers with new addition and multiplication operations defined by a (+) b = a + b - 1 and a (*) b = a + b - ab. Prove Z (the integers) are isomorphic to Z*. Can someone please explain this to me? I get that f(1) = 0, f(2) = -1 but then f(-1) = -f(1) = 0 and f(2) = -f(2) = 1 but this does not make sense in order to...
If p is prime, then Z*p is a group under multiplication.  
If p is prime, then Z*p is a group under multiplication.  
A sequence is just an infinite list of numbers (say real numbers, we often denote these...
A sequence is just an infinite list of numbers (say real numbers, we often denote these by a0,a1,a2,a3,a4,.....,ak,..... so that ak denotes the k-th term in the sequence. It is not hard to see that the set of all sequences, which we will call S, is a vector space. a) Consider the subset, F, of all sequences, S, which satisfy: ∀k ≥ 2,a(sub)k = a(sub)k−1 + a(sub)k−2. Prove that F is a vector subspace of S. b) Prove that if...
Let R be a ring (not necessarily commutative), and let X denote the set of two-sided...
Let R be a ring (not necessarily commutative), and let X denote the set of two-sided ideals of R. (i) Show that X is a poset with respect to to set-theoretic inclusion, ⊂. (ii) Show that with respect to the operations I ∩ J and I + J (candidates for meet and join; remember that I+J consists of the set of sums, {i + j} where i ∈ I and j ∈ J) respectively, X is a lattice. (iii) Give...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT