Question

In: Advanced Math

c) Let R be any ring and let ??(?) be the set of all n by...

c) Let R be any ring and let ??(?) be the set of all n by n matrices. Show that ??(?) is a ring with identity under standard rules for adding and multiplying matrices. Under what conditions is ??(?) commutative?

Solutions

Expert Solution


Related Solutions

Let R be a ring and n ∈ N. Let S = Mn(R) be the ring...
Let R be a ring and n ∈ N. Let S = Mn(R) be the ring of n × n matrices with entries in R. a) i) Let T be the subset of S consisting of the n × n diagonal matrices with entries in R (so that T consists of the matrices in S whose entries off the leading diagonal are zero). Show that T is a subring of S. We denote the ring T by Dn(R). ii). Show...
let R be a ring; X a non-empty set and (F(X, R), +, *) the ring...
let R be a ring; X a non-empty set and (F(X, R), +, *) the ring of the functions from X to R. Show directly the associativity of the multiplication of F(X, R). Assume that R is unital and commutative. show that F(X, R) is also unital and commutative.
Let R be a ring (not necessarily commutative), and let X denote the set of two-sided...
Let R be a ring (not necessarily commutative), and let X denote the set of two-sided ideals of R. (i) Show that X is a poset with respect to to set-theoretic inclusion, ⊂. (ii) Show that with respect to the operations I ∩ J and I + J (candidates for meet and join; remember that I+J consists of the set of sums, {i + j} where i ∈ I and j ∈ J) respectively, X is a lattice. (iii) Give...
Let R be a ring and f : M −→ N a morphism of left R-modules. Show that:
Let R be a ring and f : M −→ N a morphism of left R-modules. Show that: c) K := {m ∈ M | f(m) = 0} satisfies the Universal Property of Kernels. d) N/f(M) satisfies the Universal Property of Cokernels. Q2. Show that ZQ :a) contains no minimal Z-submodule
Let R be a ring and f : M −→ N a morphism of left R-modules. Show that:
Let R be a ring and f : M −→ N a morphism of left R-modules. Show that: c) K := {m ∈ M | f(m) = 0} satisfies the Universal Property of Kernels. d) N/f(M) satisfies the Universal Property of Cokernels.  
Let F be a field and R = Mn(F) the ring of n×n matrices with entires...
Let F be a field and R = Mn(F) the ring of n×n matrices with entires in F. Prove that R has no two sided ideals except (0) and (1).
Let S be a set of n numbers. Let X be the set of all subsets...
Let S be a set of n numbers. Let X be the set of all subsets of S of size k, and let Y be the set of all ordered k-tuples (s1, s2,   , sk) such that s1 < s2 <    < sk. That is, X = {{s1, s2,   , sk} | si  S and all si's are distinct}, and Y = {(s1, s2,   , sk) | si  S and s1 < s2 <    < sk}. (a) Define a one-to-one correspondence f : X → Y. Explain...
Let R be the ring of all 2 x 2 real matrices. A. Assume that A...
Let R be the ring of all 2 x 2 real matrices. A. Assume that A is an element of R such that AB=BA for all B elements of R. Prove that A is a scalar multiple of the identity matrix. B. Prove that {0} and R are the only two ideals. Hint: Use the Matrices E11, E12, E21, E22.
Let R be a ring with at least two elements. Prove that M2×2(R)is always a ring...
Let R be a ring with at least two elements. Prove that M2×2(R)is always a ring (with addition and multiplication of matrices defined as usual).
Let X be the set of all subsets of R whose complement is a finite set...
Let X be the set of all subsets of R whose complement is a finite set in R: X = {O ⊂ R | R − O is finite} ∪ {∅} a) Show that T is a topological structure no R. b) Prove that (R, X) is connected. c) Prove that (R, X) is compact.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT