Question

In: Advanced Math

Let A be an infinite set and let B ⊆ A be a subset. Prove: (a)...

Let A be an infinite set and let B ⊆ A be a subset. Prove:

(a) Assume A has a denumerable subset, show that A is equivalent to a proper subset of A.

(b) Show that if A is denumerable and B is infinite then B is equivalent to A.

Solutions

Expert Solution


Related Solutions

Prove that a subset of a countably infinite set is finite or countably infinite
Prove that a subset of a countably infinite set is finite or countably infinite
prove that if a set A is countably infinite and B is a superset of A,...
prove that if a set A is countably infinite and B is a superset of A, then prove that B is infinite
Show that a set S has infinite elements if and only if it has a subset...
Show that a set S has infinite elements if and only if it has a subset U such that (1) U does not equal to S and (2) U and S have the same cardinality.
Prove or disprove if B is a proper subset of A and there is a bijection...
Prove or disprove if B is a proper subset of A and there is a bijection from A to B then A is infinite
Let A = {a+b*sqrt14: a,b∈Z}. Prove that A ∩ Q = Z. Explain is set A...
Let A = {a+b*sqrt14: a,b∈Z}. Prove that A ∩ Q = Z. Explain is set A countable?
Let A be a subset of all Real Numbers. Prove that A is closed and bounded...
Let A be a subset of all Real Numbers. Prove that A is closed and bounded (I.e. compact) if and only if every sequence of numbers from A has a subsequence that converges to a point in A. Given it is an if and only if I know we need to do a forward and backwards proof. For the backwards proof I was thinking of approaching it via contrapositive, but I am having a hard time writing the proof in...
1. Let A be an inductive subset of R. Prove that {1} ∪ {x + 1...
1. Let A be an inductive subset of R. Prove that {1} ∪ {x + 1 | x ∈ A} is inductive. 2. (a) Let n ∈ N(Natural number) and suppose that k 2 < n < (k + 1)2 for some k ∈ N. Prove that n does not have a square root in N. (b) Let c ∈ R \ {0}. Prove that if c has a square root in Z, then c has a square root in...
Let A ⊆ C be infinite and denote by A' the set of all the limit...
Let A ⊆ C be infinite and denote by A' the set of all the limit points of A. Prove that if z ∈ A' then there is a non-trivial sequence of elements in A that converges to z
Prove that a disjoint union of any finite set and any countably infinite set is countably...
Prove that a disjoint union of any finite set and any countably infinite set is countably infinite. Proof: Suppose A is any finite set, B is any countably infinite set, and A and B are disjoint. By definition of disjoint, A ∩ B = ∅ In case A = ∅, then A ∪ B = B, which is countably infinite by hypothesis. Now suppose A ≠ ∅. Then there is a positive integer m so that A has m elements...
hzhshs assume that X is normed linear space let A is a subset of X prove...
hzhshs assume that X is normed linear space let A is a subset of X prove that: if A is compact then A is closed and bounded
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT