Question

In: Statistics and Probability

A random sample of 136 observations produced a sample mean of 29. Find the critical and...

A random sample of 136 observations produced a sample mean of 29. Find the critical and observed values of z for the following test of hypothesis using a=0.1. The population standard deviation is known to be 5 and the population distribution is normal. H0: mean = 28 versus H1: mean not equal to 28. Round your answers to two decimal places.
zcritical left=

zcritical right =

zobserved =

Solutions

Expert Solution

Given : µ = 28 , σ = 5, n=136 , = 29 , α = 0.1

Step 1) Establish the hypothesi:

H0 : µ = 28 Vs   H1 : µ ≠ 28

Step 2) calculating test statistics.

Population standard deviation σ is known, we use z statistic.

Test statistic

Z =      =       = 2.33

Z observed = 2.33

Step 3) Critical region:

The critical value is based on H1 and α = 0.1.

Since we have two tail test( H1 contains ≠ sign ).

The critical value is α/2 = 0.1/2 = 0.05

That is 5% for left side and 5% for right side of the standard normal table.

We have to find value of z having probability 0.05 for the left side and 0.95 for the right side from the z distribution table.

From standard normal table

Z left    =-1.64   and Z right =1.64

Z Observed =2.33

Step 4)

Conclusion: Observed test statistics lies beyond the critical values, we reject H0 .


Related Solutions

A random sample of 105 observations produced a sample mean of 33. Find the critical and...
A random sample of 105 observations produced a sample mean of 33. Find the critical and observed values of z for the following test of hypothesis using α=0.025. The population standard deviation is known to be 9 and the population distribution is normal. H0: μ=28 versus H1: μ>28. Round your answers to two decimal places. zcritical = zobserved =
A random sample of 100 observations produced a sample mean of 32. Find the critical and...
A random sample of 100 observations produced a sample mean of 32. Find the critical and observed values of z for the following test of hypothesis using α = 0.025 . The population standard deviation is known to be 5 and the population distribution is normal. H 0 : μ = 28 versus H 1 : μ ≠ 28 .
A random sample of 134 observations produced a sample mean of 31. Find the critical and...
A random sample of 134 observations produced a sample mean of 31. Find the critical and observed values of z for the following test of hypothesis using α=0.1. The population standard deviation is known to be 8 and the population distribution is normal. H0: μ=28 versus H1: μ>28. Round your answers to two decimal places. zcritical = zobserved =
A random sample of 29 observations is used to estimate the population mean. The sample mean...
A random sample of 29 observations is used to estimate the population mean. The sample mean and the sample standard deviation are calculated as 130.2 and 29.60, respectively. Assume that the population is normally distributed Construct the 95% confidence interval for the population mean. Construct the 99% confidence interval for the population mean Use your answers to discuss the impact of the confidence level on the width of the interval. As the confidence level increases, the interval becomes wider. As...
A random sample of 120 observations produced a mean of ?⎯⎯⎯ =29.4 from a population with...
A random sample of 120 observations produced a mean of ?⎯⎯⎯ =29.4 from a population with a normal distribution and a standard deviation ?=2.45. (a) Find a 95% confidence interval for ? ___ ≤ ? ≤ ___ (b) Find a 90% confidence interval for ? ___ ≤ ? ≤ ___ (c) Find a 99% confidence interval for ?μ ___ ≤ ? ≤ ___
A random sample of 90 observations produced a mean of 32.4 from a population with a...
A random sample of 90 observations produced a mean of 32.4 from a population with a normal distribution and a standard deviation ?=2.98. (a) Find a 90% confidence interval for μ ≤?≤ (b) Find a 95% confidence interval for μ ≤?≤ (c) Find a 99% confidence interval for μ ≤?≤
A random sample of 100 observations from a quantitative population produced a sample mean of 29.8...
A random sample of 100 observations from a quantitative population produced a sample mean of 29.8 and a sample standard deviation of 7.2. Use the p-value approach to determine whether the population mean is different from 31. Explain your conclusions. (Use α = 0.05.) State the null and alternative hypotheses. (Choose Correct Letter) (a) H0: μ = 31 versus Ha: μ < 31 (b) H0: μ ≠ 31 versus Ha: μ = 31     (c) H0: μ < 31 versus Ha:...
A random sample of 91 observations produced a mean x̄ = 25.6 and a standard deviation...
A random sample of 91 observations produced a mean x̄ = 25.6 and a standard deviation s = 2.6. a. find a 95% confidence interval for μ. b. find a 90% confidence interval for μ. c. find a 99% confidence interval for μ.
(4.1) A random sample of 89 observations produced a mean x = 26.1 and a standard...
(4.1) A random sample of 89 observations produced a mean x = 26.1 and a standard deviation s = 2.4 a. Find a? 95% confidence interval for ?. b. Find a? 90% confidence interval for ?. c. Find a? 99% confidence interval for ?. a. The? 95% confidence interval is (----,----) ?(Use integers or decimals for any numbers in the expression. Round to two decimal places as? needed.) b. The? 90% confidence interval is ----,------. (Use integers or decimals for...
A random sample of 91 observations produced a mean xequals25.7 and a standard deviation sequals2.6. a....
A random sample of 91 observations produced a mean xequals25.7 and a standard deviation sequals2.6. a. Find a​ 95% confidence interval for mu. b. Find a​ 90% confidence interval for mu. c. Find a​ 99% confidence interval for mu.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT