In: Operations Management
The office manager for the Metro Life Insurance Company orders letterhead stationery from an office products firm in boxes of 500 sheets. The company uses 6500 boxes per year. Annual carrying costs are $3 per box, and ordering costs are $28. The following discount price schedule is provided by the office supply company: ORDER QUANTITY (BOXES) PRICE PER BOX 200–999 $16 1000–2999 14 3000–5999 13 6000+ 12 Determine the optimal order quantity and the total annual inventory cost. 13.32 Determine the optimal order quantity and total annual inventory cost for boxes of stationery in Problem 13.31 if the carrying cost is 20% of the price of a box of stationery.
1. DEMAND = 6500
HOLDING COST = 3
ORDERING COST = 28
EOQ = SQRT(2DS/H)
EOQ = SQRT( 2 * 6500 * 28 / 3) = 348
TCI = annual holding cost + annual ordering cost + annual material cost
Annual holding = adjusted quantity / 2 * holding cost
Annual ordering = demand / adjusted quantity * ordering cost
Annual material cost = demand * cost per unit
ADJUSTED Q = EOQ IF EOQ > LOWER LIMIT, < UPPER LIMIT
LOWER LIMIT IF EOQ < LOWER LIMIT
UPPER LIMIT IF EOQ > UPPER LIMIT
NO. |
LOWER BRACKET |
UPPER BRACKET |
PER UNIT |
HC |
EOQ |
Q* |
TOTAL COST |
FORMULA |
1 |
200 |
999 |
16 |
3 |
348 |
348 |
105044.99 |
(6500 * 16) + ((348 / 2) * 3) + ((6500 / 348) * 28) = 105045 |
2 |
1000 |
2999 |
14 |
3 |
348 |
1000 |
92682 |
(6500 * 14) + ((1000 / 2) * 3) + ((6500 / 1000) * 28) = 92682 |
3 |
3000 |
5999 |
13 |
3 |
348 |
3000 |
89060.67 |
(6500 * 13) + ((3000 / 2) * 3) + ((6500 / 3000) * 28) = 89061 |
4 |
6000 |
MORE |
12 |
3 |
348 |
6000 |
87030.33 |
(6500 * 12) + ((6000 / 2) * 3) + ((6500 / 6000) * 28) = 87030 |
OPTIMAL ORDER QUANTITY = 6000
TOTAL COST OF INVENTORY = 87030
2. If holding cost = 20%
NO. |
LOWER BRACKET |
UPPER BRACKET |
PER UNIT |
HC |
EOQ |
Q* |
TOTAL COST |
FORMULA |
1 |
200 |
999 |
16 |
3.2 |
337 |
337 |
105079.26 |
(6500 * 16) + ((337 / 2) * 3.2) + ((6500 / 337) * 28) = 105079 |
2 |
1000 |
2999 |
14 |
2.8 |
361 |
1000 |
92582 |
(6500 * 14) + ((1000 / 2) * 2.8) + ((6500 / 1000) * 28) = 92582 |
3 |
3000 |
5999 |
13 |
2.6 |
374 |
3000 |
88460.67 |
(6500 * 13) + ((3000 / 2) * 2.6) + ((6500 / 3000) * 28) = 88461 |
4 |
6000 |
MORE |
12 |
2.4 |
389 |
6000 |
85230.33 |
(6500 * 12) + ((6000 / 2) * 2.4) + ((6500 / 6000) * 28) = 85230 |
OPTIMAL ORDER QUANTITY = 6000
TOTAL COST OF INVENTORY = 85230