Question

In: Physics

A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100...

  1. A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100 g piece of ice cooled to -20 C is placed in the calorimeter.
  1. Find the final temperature of the system, assuming no heat losses. (Assume that the specific heat of ice is 2.0 kJ/kg K)
  2. A second 200 g piece of ice at -20 C is added. How much ice remains in the system after it reaches equilibrium?
  3. Would your answer to part b be different if both pieces of ice were added at the same time?

(specific heat of aluminum is 0.9 kJ/kg K and water is 4.18 kJ/kg K)

Solutions

Expert Solution


Related Solutions

A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100...
A 200 g aluminum calorimeter can contain 500 g of water at 20 C. A 100 g piece of ice cooled to -20 C is placed in the calorimeter. A) Find the final temperature of the system, assuming no heat losses. (Assume that the specific heat of ice is 2.0 kJ/kg K) B) A second 200 g piece of ice at -20 C is added. How much ice remains in the system after it reaches equilibrium? C) Would your answer...
A 200.0 g aluminum calorimeter contains 600.0 g of water at 20.0 °C. A 100.0 g...
A 200.0 g aluminum calorimeter contains 600.0 g of water at 20.0 °C. A 100.0 g piece of ice is cooled to −20.0 °C and then placed in the calorimeter. Use the following specific heats: cAl = 900.0 J Kg-1 °C-1, cwater = 4186 J Kg-1 °C-1, cice = 2.10 x 103 J Kg-1 °C-1. The latent heat of fusion for water is LF = 333.5 x 103 J/Kg. (a) Find the final temperature of the system, assuming no heat...
Steam at 100°C is condensed into a 54.0 g aluminum calorimeter cup containing 260 g of...
Steam at 100°C is condensed into a 54.0 g aluminum calorimeter cup containing 260 g of water at 25.0°C. Determine the amount of steam (in g) needed for the system to reach a final temperature of 64.0°C. The specific heat of aluminum is 900 J/(kg · °C).
A 200 g insulated aluminum cup at 16 ∘C is filled with 255 g of water...
A 200 g insulated aluminum cup at 16 ∘C is filled with 255 g of water at 100 ∘C a) Determine the final temperature of the mixture. b)  Determine the total change in entropy as a result of the mixing process (use ΔS=∫dQ/T).
100 g of ice at -20°C are mixed with 250 g of water at 20°C in...
100 g of ice at -20°C are mixed with 250 g of water at 20°C in an insulated calorimeter. What is the final temperature of the system? How many grams of liquid water and how many grams of ice will you find after the system equilibrates? find T in degrees C; m of solid (in grams); m of liquid (in grams) T=____ ms=____ mliq=____
100 g of solid ice at 0°C is added to 500 g of liquid water at...
100 g of solid ice at 0°C is added to 500 g of liquid water at 90°C. What is the final temperature? What is initial water temperature is required so that 10 g of ice remain once equilibrium has been reached?
Consider a solution of 1.00 g of glucose in 100 g of water at 20˚C (where...
Consider a solution of 1.00 g of glucose in 100 g of water at 20˚C (where the vapor pressure of pure water is 17.54 torr). For this problem we will assume the solution behaves ideally. (a) What is the equilibrium vapor pressure of the solution? (b) What is the osmotic pressure of the solution versus pure water (report it in torr)? (c) What is the activity of water as a solvent in the solution? (d) Now suppose 1.00 g of...
28 g of ice at -10⁰C is dropped in an insulated 75-g aluminum calorimeter cup containing...
28 g of ice at -10⁰C is dropped in an insulated 75-g aluminum calorimeter cup containing 140 g of water at 30⁰C. (a) Calculate the equilibrium temperature of the container. Specific heats of liquid water, ice and aluminum are 4186 J/(kg ⁰C), 2090 J/(kg ⁰C) and 910 J/(kg ⁰C)respectively. Latent heat of fusion for ice is 3.33 x 105 J/kg. (b) What if, find the final temperature if 68 g of ice had been dropped.
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of...
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of copper metal is heated to 100.4 ∘C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g⋅K . The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.3 ∘C . Part A Determine the amount of heat, in J , lost by the copper block....
A coffee cup calorimeter contains 152.18 g of water at 20.90 °C. A 55.336 g piece...
A coffee cup calorimeter contains 152.18 g of water at 20.90 °C. A 55.336 g piece of iron is heated to 98.37 °C. The piece of iron is added to the coffee cup caloriemter and the contents reach thermal equilibrium at 23.60 °C. The specific heat capacity of iron is 0.449 J g⋅K and the specific heat capacity of water is 4.184 J g⋅K . How much heat, q , is lost by the piece of iron? How much heat,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT