Question

In: Advanced Math

6. Consider the one dimensional wave equation with boundary conditions and initial conditions: PDE : utt...

6. Consider the one dimensional wave equation with boundary conditions and initial conditions:

PDE : utt = c 2 uxx, BC : u(0, t) = u(L, t) = 0, IC : u(x, 0) = f(x), ut(x, 0) = g(x)

a) Suppose c = 1, L = 1, f(x) = 180x 2 (1 − x), and g(x) = 0. Using the first 10 terms in the series, plot the solution surface and enough time snapshots to display the dynamics of the solution

b) What happens to the solution as t → ∞? Explain your answer in light of (a) and the physical interpretation of the problem. Does (b) reflect this?

c) Redo parts (a) and (b) for c = 1, L = π, f(x) = 2 sin 3x, and g(x) = 1 − x.

Solutions

Expert Solution


Related Solutions

For the wave equation, utt = c2uxx, with the following boundary and initial conditions, u(x, 0)...
For the wave equation, utt = c2uxx, with the following boundary and initial conditions, u(x, 0) = 0 ut(x, 0) = 0.1x(π − x) u(0,t) = u(π,t) = 0 (a) Solve the problem using the separation of variables. (b) Solve the problem using D’Alembert’s solution. Hint: I would suggest doing an odd expansion of ut(x,0) first; the final solution should be exactly like the one in (a).
Consider the following wave equation for u(t, x) with boundary and initial conditions defined for 0...
Consider the following wave equation for u(t, x) with boundary and initial conditions defined for 0 ≤ x ≤ 2 and t ≥ 0. ∂ 2u ∂t2 = 0.01 ∂ 2u ∂x2 (0 ≤ x ≤ 2, t ≥ 0) (1) ∂u ∂x(t, 0) = 0 and ∂u ∂x(t, 2) = 0 (2) u(0, x) = f(x) = x if 0 ≤ x ≤ 1 1 if 1 ≤ x ≤ 2. (a) Compute the coefficients a0, a1, a2, ....
Solve the heat equation (in one dimensional case) for c^2=9, the following boundary and initial conditions:...
Solve the heat equation (in one dimensional case) for c^2=9, the following boundary and initial conditions: u(0,t)=u(2Pie,t)=0 u(x,0)=5sinx = 2sin5x
For a unique solution to the wave equation, what boundary conditions must be satisfied. a) Boundary...
For a unique solution to the wave equation, what boundary conditions must be satisfied. a) Boundary conditions are not needed for a medium with no interfaces. b) This is a trick question; all boundary conditions must be satisfied. c) The tangential boundary conditions d) The normal boundary conditions e) Continuity in solution across the boundary must be satisfied. T F (1)The loss tangent is related to the ratio of the conduction current density to the convection current density in the...
Consider the following one-dimensional partial differentiation wave equation. Produce the solution u(x, t) of this equation....
Consider the following one-dimensional partial differentiation wave equation. Produce the solution u(x, t) of this equation. 4Uxx = Utt 0 < x 0 Boundary Conditions: u (0, t) = u (2π, t) = 0, Initial Conditions a shown below: consider g(x)= 0 in both cases. (a) u (x, 0) = f(x) = 3sin 2x +3 sin7x , 0 < x <2π (b) u (x, 0) = x +2, 0 < x <2π
Consider a two-dimensional electron gas in a square box of side L, with periodic boundary conditions....
Consider a two-dimensional electron gas in a square box of side L, with periodic boundary conditions. a) Derive the density of states per unit energy, D(ε). b) Find the Fermi wavevector, kF, and the Fermi energy, εF, in terms of the number of electrons N and the area of the box, A=L2 . c) Calculate the density of states at the Fermi energy, D(εF), expressed in terms of N and A. Calculate the heat capacity, CV.
Consider a two-dimensional electron gas in a square box of side L, with periodic boundary conditions....
Consider a two-dimensional electron gas in a square box of side L, with periodic boundary conditions. a) Derive the density of states per unit energy, D(ε). b) Find the Fermi wavevector, kF, and the Fermi energy, εF, in terms of the number of electrons N and the area of the box, A=L2 . c) Calculate the density of states at the Fermi energy, D(εF), expressed in terms of N and A. Calculate the heat capacity, CV.
Consider the wave function Ψ = Ae−α|x| Which of the following boundary conditions are satisfied by...
Consider the wave function Ψ = Ae−α|x| Which of the following boundary conditions are satisfied by the wave function? Group of answer choices Ψ approaches zero as x approaches ±∞ Ψ is single valued. Ψ is finite everywhere. None of the boundary conditions are satisfied.
Consider a two-dimensional universe where Maxwell's equations are valid (their corresponding two-dimensional). Derive a wave equation.
Consider a two-dimensional universe where Maxwell's equations are valid (their corresponding two-dimensional). Derive a wave equation.
If friction is present, the wave equation takes the form utt − c2 uxx = −r...
If friction is present, the wave equation takes the form utt − c2 uxx = −r ut, where the resistance r > 0 is a constant. Consider a periodic source at one end: u(0, t) = 0, u(l, t) = Aeiωt . (a) Show that the PDE and the BC are satisfied by u(x, t) = Aeiωt sin βx sin βl , where β2c2 = ω2 − irω. (b) No matter what the IC, u(x, 0) and ut(x, 0), are,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT