In: Math
Consider the following one-dimensional partial differentiation wave equation. Produce the solution u(x, t) of this equation. 4Uxx = Utt 0 < x 0 Boundary Conditions: u (0, t) = u (2π, t) = 0, Initial Conditions a shown below: consider g(x)= 0 in both cases.
(a) u (x, 0) = f(x) = 3sin 2x +3 sin7x , 0 < x <2π
(b) u (x, 0) = x +2, 0 < x <2π