Question

In: Physics

Consider the wave function Ψ = Ae−α|x| Which of the following boundary conditions are satisfied by...

Consider the wave function

Ψ = Ae−α|x|

Which of the following boundary conditions are satisfied by the wave function?

Group of answer choices

Ψ approaches zero as x approaches ±∞

Ψ is single valued.

Ψ is finite everywhere.

None of the boundary conditions are satisfied.

Solutions

Expert Solution

For a acceptable wave function the following conditions must be satisfied.

1. The wave function ψ must be continuous. And all its partial derivatives must also be continuous

2. The wave function ψ must be quadratically integrable.

That is there must exist

3. The wave function must be single valued , since is the probability density.

4. The wave function should be finite everywhere.

Here the wave function is,

For the value wave function becomes,

,

(since )

So, first condition is satisfied.

The wave function cannot take two values at a time so, it is single valued

Therefore the wave function satisfies the second condition.

And for every values of x the wave function give a finite value. so, the wave function also satisfies the third condition.


Related Solutions

For a unique solution to the wave equation, what boundary conditions must be satisfied. a) Boundary...
For a unique solution to the wave equation, what boundary conditions must be satisfied. a) Boundary conditions are not needed for a medium with no interfaces. b) This is a trick question; all boundary conditions must be satisfied. c) The tangential boundary conditions d) The normal boundary conditions e) Continuity in solution across the boundary must be satisfied. T F (1)The loss tangent is related to the ratio of the conduction current density to the convection current density in the...
A traveling wave along the x-axis is given by the following wave function ψ(x, t) =...
A traveling wave along the x-axis is given by the following wave function ψ(x, t) = 4.5 cos(2.1x - 11.8t + 0.52),where x in meter, t in seconds, and ψ in meters. Find a) the frequency, in hertz b)The wavelength in meters. c) The wave speed, in meters per second. d) The phase constant in radians.
A particle's wave function is ψ(x) = Ae−c(x−b)2 where A = 1.95 nm−1/2 and b =...
A particle's wave function is ψ(x) = Ae−c(x−b)2 where A = 1.95 nm−1/2 and b = 0.600 nm. (a) What is the value of the constant c (in nm−2)? nm−2 (b) What is the expectation value for the position of this particle (in nm)? nm
Consider the following wave equation for u(t, x) with boundary and initial conditions defined for 0...
Consider the following wave equation for u(t, x) with boundary and initial conditions defined for 0 ≤ x ≤ 2 and t ≥ 0. ∂ 2u ∂t2 = 0.01 ∂ 2u ∂x2 (0 ≤ x ≤ 2, t ≥ 0) (1) ∂u ∂x(t, 0) = 0 and ∂u ∂x(t, 2) = 0 (2) u(0, x) = f(x) = x if 0 ≤ x ≤ 1 1 if 1 ≤ x ≤ 2. (a) Compute the coefficients a0, a1, a2, ....
The wave function for hydrogen in the 1s state may be expressed as ψ(r) = Ae−r/a0....
The wave function for hydrogen in the 1s state may be expressed as ψ(r) = Ae−r/a0. Determine the normalization constant A for this wave function. (Use the following as necessary: a0.)
Asume the wave function Ψ(x) = A/(x²+a²) whith x real, A and a constants a) find...
Asume the wave function Ψ(x) = A/(x²+a²) whith x real, A and a constants a) find the normalized wave function Φ(p) un the momentum space associated to Ψ(x) b) use Φ(p) yo compute the expected values for p, p², and σ_p c) verify if this state fulfills the Heisenberg uncertainty principle
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a, where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.21a  in a small interval of width 0.01a? (c) What is the probability for the particle to be found between x...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
For the wave equation, utt = c2uxx, with the following boundary and initial conditions, u(x, 0)...
For the wave equation, utt = c2uxx, with the following boundary and initial conditions, u(x, 0) = 0 ut(x, 0) = 0.1x(π − x) u(0,t) = u(π,t) = 0 (a) Solve the problem using the separation of variables. (b) Solve the problem using D’Alembert’s solution. Hint: I would suggest doing an odd expansion of ut(x,0) first; the final solution should be exactly like the one in (a).
6. Consider the one dimensional wave equation with boundary conditions and initial conditions: PDE : utt...
6. Consider the one dimensional wave equation with boundary conditions and initial conditions: PDE : utt = c 2 uxx, BC : u(0, t) = u(L, t) = 0, IC : u(x, 0) = f(x), ut(x, 0) = g(x) a) Suppose c = 1, L = 1, f(x) = 180x 2 (1 − x), and g(x) = 0. Using the first 10 terms in the series, plot the solution surface and enough time snapshots to display the dynamics of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT