Question

In: Advanced Math

Let A ⊆ R, let f : A → R be a function, and let c...

Let A ⊆ R, let f : A → R be a function, and let c be a limit point of A. Suppose that a student copied down the following definition of the limit of f at c: “we say that limx→c f(x) = L provided that, for all ε > 0, there exists a δ ≥ 0 such that if 0 < |x − c| < δ and x ∈ A, then |f(x) − L| < ε”. What was the student’s mistake? If this were the correct definition of a limit, which functions would have which limits, and at which points?

Solutions

Expert Solution


Related Solutions

Let f : R → R be a function. (a) Prove that f is continuous on...
Let f : R → R be a function. (a) Prove that f is continuous on R if and only if, for every open set U ⊆ R, the preimage f −1 (U) = {x ∈ R : f(x) ∈ U} is open. (b) Use part (a) to prove that if f is continuous on R, its zero set Z(f) = {x ∈ R : f(x) = 0} is closed.
Let f: [0 1] → R be a function of the class c ^ 2 that...
Let f: [0 1] → R be a function of the class c ^ 2 that satisfies the differential equation f '' (x) = e^xf(x) for all x in (0,1). Show that if x0 is in (0,1) then f can not have a positive local maximum at x0 and can not have a negative local minimum at x0. If f (0) = f (1) = 0, prove that f = 0
6. (a) let f : R → R be a function defined by f(x) = x...
6. (a) let f : R → R be a function defined by f(x) = x + 4 if x ≤ 1 ax + b if 1 < x ≤ 3 3x x 8 if x > 3 Find the values of a and b that makes f(x) continuous on R. [10 marks] (b) Find the derivative of f(x) = tann 1 1 ∞x 1 + x . [15 marks] (c) Find f 0 (x) using logarithmic differentiation, where f(x)...
a) Let S ⊂ R, assuming that f : S → R is a continuous function,...
a) Let S ⊂ R, assuming that f : S → R is a continuous function, if the image set {f(x); x ∈ S} is unbounded prove that S is unbounded. b) Let f : [0, 100] → R be a continuous function such that f(0) = f(2), f(98) = f(100) and the function g(x) := f(x+ 1)−f(x) is equal to zero in at most two points of the interval [0, 100]. Prove that (f(50) − f(49))(f(25) − f(24)) >...
Find a function f such that F = ∇f and use it to compute R C...
Find a function f such that F = ∇f and use it to compute R C Fdr along curve C. • F = <x, y>, C is part of the parabola y = x ^ 2 from (−1, 1) to (3, 9). • F = <4xe ^ z, cos (y), 2x ^ 2e ^ z>, where C is parameterized by r (t) = <t, t ^ 2, t ^ 4>, 0 ≤ t ≤ 1.
Let the schema R = (A,B,C) and the set F = {A → B,C → B}...
Let the schema R = (A,B,C) and the set F = {A → B,C → B} of FDs be given. Is R in 3NF? Why or why not?
Let f : Rn → R be a differentiable function. Suppose that a point x∗ is...
Let f : Rn → R be a differentiable function. Suppose that a point x∗ is a local minimum of f along every line passes through x∗; that is, the function g(α) = f(x^∗ + αd) is minimized at α = 0 for all d ∈ R^n. (i) Show that ∇f(x∗) = 0. (ii) Show by example that x^∗ neen not be a local minimum of f. Hint: Consider the function of two variables f(y, z) = (z − py^2)(z...
Let f : [a, b] → R be a monotone function. Show that the discontinuity set...
Let f : [a, b] → R be a monotone function. Show that the discontinuity set Disc(f) is countable.
Let R be a UFD and let F be a field of fractions for R. If...
Let R be a UFD and let F be a field of fractions for R. If f(α) = 0, where f ∈ R [x] is monic and α ∈ F, show that α ∈ R NOTE: A corollary is the fact that m ∈ Z and m is not an nth power in Z, then n√m is irrational.
Let f:(a, b) → R be a function and n∈N. Assume that f is n-times differentiable...
Let f:(a, b) → R be a function and n∈N. Assume that f is n-times differentiable and f^(n)(x) = 0 for all x∈(a,b). Show that f is a polynomial of degree at most n−1.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT