Question

In: Chemistry

At 2300 K the value of K of the following reaction is 1.5 x 10-3: N2(g)...

At 2300 K the value of K of the following reaction is 1.5 x 10-3:

N2(g) + O2(g) ↔ 2NO(g)

At the instant when a reaction vessel at 2300K contains 0.50M N2, 0.25M O2, and 0.0042M NO, by calculation of the reaction quotient (Q), is the reaction mixture at equilibrium? If not, in which direction will the reaction proceed to reach equilibrium?

Solutions

Expert Solution

Answer. for the given reaction rate constant at equilibrium is 1.5x10-3. and the concentrations of reactants and products are given as [N2]=0.50M,[O2]=0.25 M, [NO]=0.0042M.     

reaction quotient Q=     [NO]2/[N2][O2] =(0.0042x0.0042) /0.50x0.25 =1.411x10-4 it is less than the K value so the reaction is noy at equilibrium position and the reaction proceed in the forward direction to reach equilibrium.                                                                                                   


Related Solutions

Consider the equilibrium N2(g) + O2(g) ⇄ 2 NO(g) At 2300 K the equilibrium constant K...
Consider the equilibrium N2(g) + O2(g) ⇄ 2 NO(g) At 2300 K the equilibrium constant K = 1.7 × 10-3. Suppose that 0.0150 mol NO(g), 0.250 mol N2(g), and 0.250 mol O2(g) are placed into a 10.0-L flask and heated to 2300 K. The system is not at equilibrium. Determine the direction the reaction must proceed to reach equilibrium and the final equilibrium concentrations of each species. to the right to the left [N2] =____ mol/L [O2] = ____mol/L [NO]...
At 400 K, the reaction N2 (g) + 3 H2 (g) → 2 NH3 (g) reaches...
At 400 K, the reaction N2 (g) + 3 H2 (g) → 2 NH3 (g) reaches equilibrium when the partial pressures of nitrogen, hydrogen, and ammonia gases are 4.00 atm, 1.00 atm, and 1.05 x 10^−2 atm, respectively. (a) Compute the value of the equilibrium constant, KP at 400K. (b) Compute the standard Gibbs free energy of this reaction at 400K. Express the result in kJ/mol. (c) Would the system be at equilibrium at 400 K if the partial pressures...
The equilibrium constant, K, for the following reaction is 2.3 x 10-4 at 300 °C: N2...
The equilibrium constant, K, for the following reaction is 2.3 x 10-4 at 300 °C: N2 (g) + C2H2 (g) ⇌ 2 HCN (g). Calculate the equilibrium concentration of HCN when 0.555 moles of N2 and 0.555 moles of C2H2 are introduced into a 0.500 L vessel at 300 °C.
At 35oC, K = 1.6 x 10-5 for the following reaction 2NOCl(g) <----> 2NO(g) +   ...
At 35oC, K = 1.6 x 10-5 for the following reaction 2NOCl(g) <----> 2NO(g) +    Cl2(g) Calculate the concentration of all species at equilibrium for each of the following original mixtures. 1) 3.0 moles of pure NOCl in a 2.0 L flask 2) 2.0 moles of NOCl and 2 moles of NO in a 3 L flask 3) 3.0 moles of NOCl 1 mole of Cl2 in a 2.0 L flask Show work please
At 3748°C, K = 0.093 for the following reaction. N2(g) + O2(g) equilibrium reaction arrow 2...
At 3748°C, K = 0.093 for the following reaction. N2(g) + O2(g) equilibrium reaction arrow 2 NO(g) Calculate the concentrations of all species at equilibrium for each of the following cases. (a) 1.6 g N2 and 3.0 g O2 are mixed in a 1.3-L flask. (b) 2.0 mol pure NO is placed in a 2.1-L flask.
A student ran the following reaction in the laboratory at 684 K: N2(g) + 3H2(g) 2NH3(g)...
A student ran the following reaction in the laboratory at 684 K: N2(g) + 3H2(g) 2NH3(g) When she introduced 3.26×10-2 moles of N2(g) and 6.07×10-2 moles of H2(g) into a 1.00 liter container, she found the equilibrium concentration of H2(g) to be 5.83×10-2 M. Calculate the equilibrium constant, Kc, she obtained for this reaction. Kc = __
Consider the following reaction at 173 K: 2 N2O (g) → 2 N2 (g) + O2...
Consider the following reaction at 173 K: 2 N2O (g) → 2 N2 (g) + O2 (g) In one of your laboratory experiments, you determine the equilibrium constant for this process, at 173 K, is 6.678E+57. You are given a table of data that indicates the standard heat of formation (ΔHoform) of N2O is 82.0 kJ/mol. Based on this information, what is the standard entropy change (ΔSorxn) for this reaction at 173 K? ΔSorxn(J/K)=
Given Kc = 1.5 × 1018 at 300 K for the reaction below 2 NO----->   N2 +  ...
Given Kc = 1.5 × 1018 at 300 K for the reaction below 2 NO----->   N2 +   O2 900 mg of NO were initially placed in a 1.00 L vessel and the reaction was allowed to reach equilibrium.Calculate the equilibrium concentrations of NO, N2, and O2.
) In the Haber process for ammonia, K = 0.036 for the reaction N2(g) + 3H2(g)...
) In the Haber process for ammonia, K = 0.036 for the reaction N2(g) + 3H2(g) ⇔ 2NH3(g) at 50K. If a reactor is charged with partial pressures of 0.020 bar of N2 and 0.020 bar of H2, what will be the equilibrium partial pressure of (a) N2; (b) H2; and (c) NH3? Enter the answers in bar to two significant figures and do not enter the units.
The equilibrium constant, Kc, for the following reaction is 1.05×10-3 at 446 K. PCl5(g) PCl3(g) +...
The equilibrium constant, Kc, for the following reaction is 1.05×10-3 at 446 K. PCl5(g) PCl3(g) + Cl2(g) When a sufficiently large sample of PCl5(g) is introduced into an evacuated vessel at 446 K, the equilibrium concentration of Cl2(g) is found to be 0.498 M. Calculate the concentration of PCl5 in the equilibrium mixture. ____M _______________________________________________________________________________________________________________ A student ran the following reaction in the laboratory at 689 K: N2(g) + 3H2(g) 2NH3(g) When she introduced 4.06×10-2 moles of N2(g) and 5.20×10-2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT