Question

In: Chemistry

A student ran the following reaction in the laboratory at 684 K: N2(g) + 3H2(g) 2NH3(g)...

A student ran the following reaction in the laboratory at 684 K: N2(g) + 3H2(g) 2NH3(g) When she introduced 3.26×10-2 moles of N2(g) and 6.07×10-2 moles of H2(g) into a 1.00 liter container, she found the equilibrium concentration of H2(g) to be 5.83×10-2 M. Calculate the equilibrium constant, Kc, she obtained for this reaction.

Kc = __

Solutions

Expert Solution

since volume is 1 L, number of moles will be same as concentration

N2                +             3H2     <------------------> 2NH3
3.26*10^-2            6.07*10^-2                                   0         (initial)
3.26*10^-2 -x      6.07*10^-2 -3x                            2x        (at equilibrium)

given
[H2]= 5.83*10^-2 M
so,
6.07*10^-2 -3x     = 5.83*10^-2
x = 8*10^-4 M

Kc= [NH3]^2 / {[N2] [H2]^3}
       = (2x)^2 / (3.26*10^-2 - x ) (5.83*10^-2)^3
       = (2*8*10^-4 )^2 / ((3.26*10^-2 - 8*10^-4 ) (5.83*10^-2)^3)
       = (2.56*10^-6)/ (3.18*10^-2 * 1.982*10^-4)
      = 0.406

Answer: 0.406


Related Solutions

A student ran the folllowing reaction in the laboratory at 661 K: 2NH3(g) N2(g) + 3H2(g)...
A student ran the folllowing reaction in the laboratory at 661 K: 2NH3(g) N2(g) + 3H2(g) When she introduced NH3(g) at a pressure of 0.597 atm into a 1.00 L evacuated container, she found the equilibrium partial pressure of H2(g) to be 0.879 atm. Calculate the equilibrium constant, Kp, she obtained for this reaction.
A student ran the following reaction in the laboratory at 445 K : PCl5(g)-------> PCl3(g) +...
A student ran the following reaction in the laboratory at 445 K : PCl5(g)-------> PCl3(g) + Cl2(g) When she introduced 1.28 moles of PCl5(g) into a 1.00 liter container, she found the equilibrium concentration of PCl5(g) to be 1.24 M. Calculate the equilibrium constant, Kc, she obtained for this reaction.
1. A student ran the following reaction in the laboratory at 582 K: CO(g) + Cl2(g)...
1. A student ran the following reaction in the laboratory at 582 K: CO(g) + Cl2(g)      COCl2(g) When she introduced 0.380 moles of CO(g) and 0.403 moles of Cl2(g) into a 1.00 liter container, she found the equilibrium concentration of COCl2(g) to be 0.342 M. Calculate the equilibrium constant, Kc, she obtained for this reaction. 2. The equilibrium constant, Kc, for the following reaction is 1.29×10-3 at 540 K. COCl2(g) CO(g) + Cl2(g) When a sufficiently large sample of COCl2(g)...
-A student ran the following reaction in the laboratory at 1143 K: 2SO2(g) + O2(g) 2SO3(g)...
-A student ran the following reaction in the laboratory at 1143 K: 2SO2(g) + O2(g) 2SO3(g) When she introduced 8.19×10-2 moles of SO2(g) and 8.56×10-2 moles of O2(g) into a 1.00 liter container, she found the equilibrium concentration of O2(g) to be 6.08×10-2 M. Calculate the equilibrium constant, Kc, she obtained for this reaction. Kc =____________ -A student ran the following reaction in the laboratory at 363 K: CH4(g) + CCl4(g)      2CH2Cl2(g) When she introduced 4.64×10-2 moles of CH4(g) and...
A student ran the following reaction in the laboratory at 720 K: H2(g) + I2(g) 2HI(g)...
A student ran the following reaction in the laboratory at 720 K: H2(g) + I2(g) 2HI(g) When she introduced 0.189 moles of H2(g) and 0.218 moles of I2(g) into a 1.00 liter container, she found the equilibrium concentration of I2(g) to be 6.05×10-2 M. Calculate the equilibrium constant, Kc, she obtained for this reaction. Kc =
A student ran the following reaction in the laboratory at 291 K: 2CH2Cl2(g) CH4(g) + CCl4(g)...
A student ran the following reaction in the laboratory at 291 K: 2CH2Cl2(g) CH4(g) + CCl4(g) When she introduced 6.63×10-2 moles of CH2Cl2(g) into a 1.00 liter container, she found the equilibrium concentration of CH2Cl2(g) to be 4.92×10-3 M. Calculate the equilibrium constant, Kc, she obtained for this reaction. Kc = _____
A student ran the following reaction in the laboratory at 610 K: CO(g) + Cl2(g) COCl2(g)...
A student ran the following reaction in the laboratory at 610 K: CO(g) + Cl2(g) COCl2(g) When she introduced 0.183 moles of CO(g) and 0.211 moles of Cl2(g) into a 1.00 liter container, she found the equilibrium concentration of Cl2(g) to be 6.72×10-2 M.   Calculate the equilibrium constant, Kc, she obtained for this reaction. 2.A student ran the following reaction in the laboratory at 546 K: COCl2(g) CO(g) + Cl2(g)   When she introduced 0.854 moles of COCl2(g) into a 1.00...
For the reaction: 3H2(g) + N2(g) ↔ 2NH3(g) Kc = 480 At equilibrium, a reaction contains...
For the reaction: 3H2(g) + N2(g) ↔ 2NH3(g) Kc = 480 At equilibrium, a reaction contains 0.3M N2(g) and 4.0M NH3(g). What is the concentration of H2(g)?
Ammonia can be synthesized by the reaction: 3H2(g) + N2(g) —-> 2NH3(g) What is the theoretical...
Ammonia can be synthesized by the reaction: 3H2(g) + N2(g) —-> 2NH3(g) What is the theoretical yield of ammonia, in kg, that we can synthesize from 5.43kg of H2 and 32.4 kg of N2?
1) In the balanced reaction N2(g) + 3H2 (g) -----> 2NH3 (g), what mass of ammonia...
1) In the balanced reaction N2(g) + 3H2 (g) -----> 2NH3 (g), what mass of ammonia could be produced from 7.628 grams of hydrogen gas? 2) How many lithium atoms are present in 68.7 grams of Li2O? 3) How many grams of carbon are present in 0.55 grams of acetaminophen? The formula for acetaminophen is C8H9O2N, and its molar mass is 151.18 g/mol. 4) What is the mass, in amu, of 8.441 moles of lead (ii) oxide? 5) For the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT