Question

In: Statistics and Probability

(a) You flip a fair coin four times, generating the sequence HTTH. What is the probability...

(a) You flip a fair coin four times, generating the sequence HTTH. What is the probability of that result occurring? (b) What is the probability that flipping a fair coin twice produces a head on one of those flips and a tail on the other flip? (c) What is the probability that flipping a fair coin four times produces two heads and two tails, in any order? (d) What is the probability that flipping a fair coin ten times produces five heads and five tails, in any order?

Solutions

Expert Solution

Probability= favourable cases /sample space

A) Required probability=1/16

B). Required probability = 2/4=1/3

C) Required probability =6/16=3/8

D) Required probability=252/1024 =0.246

Solution file is attached go through it

Thanks


Related Solutions

Flip a fair coin 5 times. What is the probability that at least one time the...
Flip a fair coin 5 times. What is the probability that at least one time the coin lands on heads?
Every day you flip a fair coin four times and if it is heads all four...
Every day you flip a fair coin four times and if it is heads all four times, you give a dollar to charity. In a year with 365 days, what is your expected annual donation to charity and what is the variance?
1. A) If you flip an unfair coin 100 times, and the probability for a coin...
1. A) If you flip an unfair coin 100 times, and the probability for a coin to be heads is 0.4, then the number of heads you expect on average is: B) If you flip an unfair coin 100 times, and the probability for a coin to be heads is 0.4, then the standard deviation for the number of heads is: C) If you flip an unfair coin 2 times, and the probability for a coin to be heads is...
Suppose that you flip a coin 11 times. What is the probability that you achieve at...
Suppose that you flip a coin 11 times. What is the probability that you achieve at least 4 tails? A sign on the pumps at a gas station encourages customers to have their oil checked, and claims that one out of 5 cars needs to have oil added. If this is true, what is the probability of each of the following: A. One out of the next four cars needs oil. Probability = B. Two out of the next eight...
If you flip a fair coin, the probability that the result is heads will be 0.50....
If you flip a fair coin, the probability that the result is heads will be 0.50. A given coin is tested for fairness using a hypothesis test of H0:p=0.50 versus HA:p≠0.50. The given coin is flipped 180 times, and comes up heads 110 times. Assume this can be treated as a Simple Random Sample. The test statistic for this sample z and the p value
1. Flip a fair coin ten times. Find the probability of at least seven heads. 2....
1. Flip a fair coin ten times. Find the probability of at least seven heads. 2. Draw five cards at once from a deck. Find the probability of getting two pairs. 3. Roll a die infinitely times. Find the probability that you see an even number before you see an one. 4. You and your friend take turns to draw from an urn containing one green marble and one hundred blue marbles, one at a time and you keep the...
We flip a fair coin 20 times. Find the probability that we obtain between 8 and...
We flip a fair coin 20 times. Find the probability that we obtain between 8 and 17 heads, inclusively. Show work and please explain to someone that hardly understands statistics!
A fair coin is flipped four times. What is the probability that tails occurs exactly 4...
A fair coin is flipped four times. What is the probability that tails occurs exactly 4 times if it is known that tails occurs at least twice
please do this as simple as you can! if you flip a fair coin 10 times...
please do this as simple as you can! if you flip a fair coin 10 times what is the probability of a) getting all tails? b) getting all heads c) getting atleast 1 tails
You roll two fair four-sided dies and then flip a fair coin. The number of flips...
You roll two fair four-sided dies and then flip a fair coin. The number of flips is the total of the roll. a. Find the expected value of the number of heads observed. b. Find the variance of the number of heads observed.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT