In: Statistics and Probability
Find the equation of the 95% confidence line from given data in EXCEL (above regression line): X VALUES:
The equation is supposed to not be linear and be to a power of a constant in the equation.If you can figure out that part its ok. Just need the equation/picture of the data, and equation for graph. Will rate highest for good answer
0.232 |
0.122 |
0.241 |
0.148 |
0.022 |
0.165 |
0.182 |
0.164 |
0.077 |
0.104 |
0.191 |
0.032 |
0.13 |
0.08 |
0.132 |
0.021 |
0.118 |
Y VALUES
9.138547 |
12.94254 |
9.956063 |
12.63151 |
40.78222 |
12.17864 |
13.73187 |
11.01636 |
17.66244 |
11.91036 |
8.969413 |
40.12883 |
12.74238 |
16.63304 |
14.04124 |
38.2091 |
13.13019 |
x | y | lnx | lny |
0.232 | 9.138547 | -1.46102 | 2.212501 |
0.122 | 12.94254 | -2.10373 | 2.56052 |
0.241 | 9.956063 | -1.42296 | 2.298182 |
0.148 | 12.63151 | -1.91054 | 2.536194 |
0.022 | 40.78222 | -3.81671 | 3.708246 |
0.165 | 12.17864 | -1.80181 | 2.499684 |
0.182 | 13.73187 | -1.70375 | 2.619719 |
0.164 | 11.01636 | -1.80789 | 2.399381 |
0.077 | 17.66244 | -2.56395 | 2.87144 |
0.104 | 11.91036 | -2.26336 | 2.477409 |
0.191 | 8.969413 | -1.65548 | 2.19382 |
0.032 | 40.12883 | -3.44202 | 3.692095 |
0.13 | 12.74238 | -2.04022 | 2.544933 |
0.08 | 16.63304 | -2.52573 | 2.811391 |
0.132 | 14.04124 | -2.02495 | 2.641999 |
0.021 | 38.2091 | -3.86323 | 3.643074 |
0.118 | 13.13019 | -2.13707 | 2.574914 |
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.967966765 | |||||||
R Square | 0.936959658 | |||||||
Adjusted R Square | 0.932756968 | |||||||
Standard Error | 0.127275068 | |||||||
Observations | 17 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 3.611438816 | 3.611438816 | 222.9428697 | 2.07127E-10 | |||
Residual | 15 | 0.242984144 | 0.016198943 | |||||
Total | 16 | 3.85442296 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 1.305686642 | 0.099795019 | 13.08368542 | 1.31469E-09 | 1.092978594 | 1.51839469 | 1.092978594 | 1.51839469 |
lnx | -0.624962592 | 0.041855952 | -14.93127154 | 2.07127E-10 | -0.714176443 | -0.535748742 | -0.71417644 | -0.535748742 |
lny = 1.3057 - 0.6251 * lnx
y = e^(1.3057 - 0.6251 * lnx)
y = e^1.3057 * x^-0.6251
y = 3.6902 x^-0.6251
Calculator View:
y = 3.6902 x^-0.6251
function value mean of x 0.1035894564 mean of y 15.22100916 correlation coefficient r -0.967966765 3.69022208 B -0.624962592 9000 0.035 0.065 9600 0.125 0.155 0.185 0.215 0.245 0.275 AXB
X | y | lnx | lny |
9.138547 | 0.232 | 2.212501401 | -1.461017907 |
12.94254 | 0.122 | 2.56051956 | -2.103734234 |
9.956063 | 0.241 | 2.298181712 | -1.422958345 |
12.63151 | 0.148 | 2.536194486 | -1.910543005 |
40.78222 | 0.022 | 3.708246202 | -3.816712826 |
12.17864 | 0.165 | 2.499683598 | -1.801809805 |
13.73187 | 0.182 | 2.619719409 | -1.703748592 |
11.01636 | 0.164 | 2.399381441 | -1.807888851 |
17.66244 | 0.077 | 2.871440351 | -2.563949857 |
11.91036 | 0.104 | 2.47740861 | -2.26336438 |
8.969413 | 0.191 | 2.193820234 | -1.655481851 |
40.12883 | 0.032 | 3.692095029 | -3.442019376 |
12.74238 | 0.13 | 2.544933446 | -2.040220829 |
16.63304 | 0.08 | 2.811391079 | -2.525728644 |
14.04124 | 0.132 | 2.641998714 | -2.024953356 |
38.2091 | 0.021 | 3.643073707 | -3.863232841 |
13.13019 | 0.118 | 2.574914159 | -2.137070655 |
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.967966765 | |||||||
R Square | 0.936959658 | |||||||
Adjusted R Square | 0.932756968 | |||||||
Standard Error | 0.197128656 | |||||||
Observations | 17 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 8.663494577 | 8.663494577 | 222.94287 | 2.07127E-10 | |||
Residual | 15 | 0.582895604 | 0.038859707 | |||||
Total | 16 | 9.246390181 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 1.814585685 | 0.277528889 | 6.538366831 | 9.3845E-06 | 1.223046862 | 2.406124507 | 1.223046862 | 2.406124507 |
lnx | -1.499225185 | 0.100408407 | -14.93127154 | 2.0713E-10 | -1.713240637 | -1.285209733 | -1.713240637 | -1.285209733 |
lny = 1.8146 - 1.4992 lnx
y = e^(1.8146 - 1.4992 lnx)
y = e^1.8146 x^(- 1.4992)
y = 6.1385 x^(- 1.4992)