In: Statistics and Probability
Find the equation of the regression line for the given data. Then construct a scatter plot of the data and draw the regression line. (The pair of variables have a significant correlation.) Then use the regression equation to predict the value of y for each of the given x-values, if meaningful. The number of hours 6 students spent for a test and their scores on that test are shown below. font size decreased by 1 font size increased by 1 Hours spent studying comma xHours spent studying, x 0 2 2 4 4 6 (a) xequals=3 hours (b) xequals=4.5 hours Test score, y 38 40 53 47 62 70(c) xequals=12 hours (d) xequals=3.5 hours Find the regression equation. ModifyingAbove y with caretyequals=nothingxplus+left parenthesis nothing right parenthesis (Round the slope to three decimal places as needed. Round the y-intercept to two decimal places as needed.)
The statistical software output for this problem is:
Simple linear regression results:
Dependent Variable: y
Independent Variable: x
y = 36.393939 + 5.0909091 x
Sample size: 6
R (correlation coefficient) = 0.84991689
R-sq = 0.72235872
Estimate of error standard deviation: 7.4018835
Parameter estimates:
Parameter | Estimate | Std. Err. | Alternative | DF | T-Stat | P-value |
---|---|---|---|---|---|---|
Intercept | 36.393939 | 5.6164523 | ? 0 | 4 | 6.4798805 | 0.0029 |
Slope | 5.0909091 | 1.5780869 | ? 0 | 4 | 3.2260006 | 0.0321 |
Analysis of variance table for regression
model:
Source | DF | SS | MS | F-stat | P-value |
---|---|---|---|---|---|
Model | 1 | 570.18182 | 570.18182 | 10.40708 | 0.0321 |
Error | 4 | 219.15152 | 54.787879 | ||
Total | 5 | 789.33333 |
Predicted values:
X value | Pred. Y | s.e.(Pred. y) | 95% C.I. for mean | 95% P.I. for new |
---|---|---|---|---|
3 | 51.666667 | 3.0218063 | (43.276788, 60.056546) | (29.469133, 73.8642) |
4.5 | 59.30303 | 3.8385699 | (48.645452, 69.960609) | (36.152989, 82.453071) |
3.5 | 54.212121 | 3.1231239 | (45.540939, 62.883303) | (31.906745, 76.517497) |
Hence,
Regression equation:
= 5.091 x + 36.39
a) y = 51.7
b) y = 59.3
c) Not meaningful
d) y = 54.2