In: Statistics and Probability
People in the aerospace industry believe the cost of a space project is a function of the mass of the major object being sent into space. Use the following data to develop a regression model to predict the cost of a space project by the mass of the space object. Determine r2 and se.
Weight (tons) 1.897, 3.019, 0.453, 0.979, 1.058, 2.100, 2.408, Cost ($ millions) 53.6, 184.7, 6.4, 23.5, 33.4, 110.4, 104.6
*(Do not round the intermediate values. Round your answers to 4 decimal places.)
**(Round the intermediate values to 4 decimal places. Round your answer to 3 decimal places.)
ŷ = *? + *? x
r2 =?**
se =?**
x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
1.897 | 53.6 | 0.04 | 408.04 | -3.94 |
3.019 | 184.7 | 1.73 | 12298.81 | 146.06 |
0.453 | 6.4 | 1.56 | 4542.76 | 84.18 |
0.979 | 23.5 | 0.52 | 2530.09 | 36.37 |
1.058 | 33.4 | 0.41 | 1632.16 | 26.02 |
2.1 | 110.4 | 0.16 | 1339.56 | 14.57 |
2.408 | 104.6 | 0.50 | 948.64000 | 21.7448 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 11.91 | 516.60 | 4.93 | 23700.06 | 325.00 |
mean | 1.70 | 73.80 | SSxx | SSyy | SSxy |
sample size , n = 7
here, x̅ = Σx / n= 1.702 ,
ȳ = Σy/n = 73.800
SSxx = Σ(x-x̅)² = 4.9268
SSxy= Σ(x-x̅)(y-ȳ) = 325.0
estimated slope , ß1 = SSxy/SSxx = 325.0
/ 4.927 = 65.96446
intercept, ß0 = y̅-ß1* x̄ =
-38.47150
so, regression line is Ŷ =
-38.472 + 65.964
*x
R² = (Sxy)²/(Sx.Sy) =
0.905
SSE= (SSxx * SSyy - SS²xy)/SSxx =
2261.9417
std error ,Se = √(SSE/(n-2)) =
21.269