In: Statistics and Probability
People in the aerospace industry believe the cost of a space
project is a function of the mass of the major object being sent
into space. Use the following data to develop a regression model to
predict the cost of a space project by the mass of the space
object. Determine r2 and
se.
Weight (tons) |
Cost ($ millions) |
---|---|
1.897 |
$ 53.6 |
3.019 |
184.8 |
0.453 |
6.4 |
0.975 |
23.5 |
1.058 |
32.6 |
2.100 |
110.4 |
2.379 |
104.6 |
*(Do not round the intermediate values. Round your
answers to 4 decimal places.)
**(Round the intermediate values to 4 decimal places. Round
your answer to 3 decimal places.)
ŷ = enter a number rounded to 4 decimal
places * + enter a number rounded to 4
decimal places * x
r2 = enter a number rounded to 3 decimal
places **
se = enter a number rounded to 3 decimal
places **
Weight (X) | Cost (Y) | X * Y | X2 | Y2 | Ŷ | (Y - Ŷ )2 | |
1.897 | 53.6 | 101.6792 | 3.5986 | 2872.96 | 86.9649 | 1113.2145 | |
3.019 | 184.8 | 557.9112 | 9.1144 | 34151.04 | 161.4872 | 543.4847 | |
0.453 | 6.4 | 2.8992 | 0.2052 | 40.96 | -8.9445 | 235.4535 | |
0.975 | 23.5 | 22.9125 | 0.9506 | 552.25 | 25.7263 | 4.9566 | |
1.058 | 32.6 | 34.4908 | 1.1194 | 1062.76 | 31.2391 | 1.8519 | |
2.1 | 110.4 | 231.84 | 4.4100 | 12188.16 | 100.4480 | 99.0429 | |
2.379 | 104.6 | 248.8434 | 5.6596 | 10941.16 | 118.9789 | 206.7538 | |
Total | 11.881 | 515.9 | 1200.576 | 25.0578 | 61809.29 | 515.9000 | 2204.7579 |
Equation of regression line is Ŷ = a + bX
b = ( n Σ(XY) - (ΣX* ΣY) ) / ( n Σ X2 - (ΣX)2
)
b = ( 7 * 1200.5763 - 11.881 * 515.9 ) / ( 7 * 25.057809 - ( 11.881
)2)
b = 66.4192
a =( ΣY - ( b * ΣX ) ) / n
a =( 515.9 - ( 66.4192 * 11.881 ) ) / 7
a = -39.0324
Equation of regression line becomes Ŷ = -39.0324 + 66.4192 X
r = 0.953
Coefficient of Determination
R2 = r2 = 0.907
Standard Error of Estimate S = √ ( Σ (Y - Ŷ ) / n - 2) = √(2204.7579 / 5) = 20.999