Question

In: Mechanical Engineering

Solve the following recurrence relation for the given initial conditions. y(n+2) - 0.3y(n + 1) + 0.02y(n) = 10 y(0) = 2; y(1) = 0

Solve the following recurrence relation for the given initial conditions.

y(n+2) - 0.3y(n + 1) + 0.02y(n) = 10        y(0) = 2;    y(1) = 0

Solutions

Expert Solution

MuPAD can be used to solve both symbolic and numeric types of calculations. MuPAD can be run by entering mupadwelcome in the command window.

 

To define a recurring equation in MuPAD, the rec function is used. The solve function is used to solve an algebraic equation.

 

The program can be defined as:

Define the recurrence equation and the initial conditions as:

r:=rec(y(n+2)-0.3*y(n+1)+0.02*y(n)=10, y(n), {y(0)=2, y(1)=0})

 

Solve the equation:

solve(r)

 

The result obtained is:

Define the recurrence equation and the initial conditions as:

 

Solve the equation:

 

Thus, the given recurrence equation has been solved.


Thus, the given recurrence equation has been solved.

Related Solutions

Solve the recurrence relation with the given initial conditions. b0 = 0, b1 = 4, bn...
Solve the recurrence relation with the given initial conditions. b0 = 0, b1 = 4, bn = 2bn ? 1 + 2bn ? 2 for n ? 2
- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n
- Solve the following recurrence relation : T(n) = T(αn) + T((1 − α)n) + n
Use generating functions to solve the following recurrence relation: an = 2an−1 + 3n , n...
Use generating functions to solve the following recurrence relation: an = 2an−1 + 3n , n ≥ 1 a0 = 2
Solve the differential equation. y''-3y'-4y=5e^4x initial conditions: y(0)=2 y'(0)=4
Solve the differential equation. y''-3y'-4y=5e^4x initial conditions: y(0)=2 y'(0)=4
Use the Laplace transform to solve the given initial value problem: y''+3y'+2y=1 y(0)=0, y'(0)=2
Use the Laplace transform to solve the given initial value problem: y''+3y'+2y=1 y(0)=0, y'(0)=2
Solve the following recurrence relation (A) an = 3an-1 + 4an-2 a0 =1, a1 = 1
  Solve the following recurrence relation   (A) an = 3an-1 + 4an-2 a0 =1, a1 = 1   (B) an = 2an-1 - an-2, a0 = 1, a2= 2
Solve by using power series: 2 y'−y = sinh( x). Find the recurrence relation and compute...
Solve by using power series: 2 y'−y = sinh( x). Find the recurrence relation and compute the first 6 coefficients (a0-a5). Use the methods of chapter 3 to solve the differential equation and show your chapter 8 solution is equivalent to your chapter 3 solution.
Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an =...
Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an = an-1 + 6an-2 - 2n+1 with a0 = -4, a1= 5 b) an = an-1 + 6an-2 + 5 x 3n with a0 = 2, a1 = 5 c) an = an-1 + 6an-2 - 36n with a0 = 10, a1= 40
6. Solve the following recurrence relations t(n) = t(n-1) + 3 for n>1 t(1) = 0...
6. Solve the following recurrence relations t(n) = t(n-1) + 3 for n>1 t(1) = 0 t(n) = t(n-1) + n   for n>1 t(1) = 1 t(n) = 3t(n/2) + n    for n>1, n is a power of 2 t(1) = ½ t(n) = 6t(n-1) – 9t(n-2)   for n>1 t(0) = 0 t(1) = 1
Solve the differential equation by variation of parameters, subject to the initial conditions y(0) = 1,...
Solve the differential equation by variation of parameters, subject to the initial conditions y(0) = 1, y'(0) = 0. y'' + 2y' − 8y = 4e−3x − e−x
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT