Question

In: Advanced Math

Consider the following non-homogeneous linear recurrence: an =−an-1 +6an-2+125(8+1)·(n+1)·2n a0 = 0 a1 = 0 (b)...

  1. Consider the following non-homogeneous linear recurrence:

    an =−an-1 +6an-2+125(8+1)·(n+1)·2n

  2. a0 = 0
    a1 = 0

    1. (b) Find the solution an(h) to the associated homogeneous linear recurrence. n

    2. (c) Find a particular solution anp to the non-homogeneous linear recurrence.

    3. (d) Find the general solution to the non-homogeneous linear recurrence.

Solutions

Expert Solution


Related Solutions

consider the linear non-homogeneous recurrence relation of order three x(n)+x(n-1)-4x(n-2)-4x(n-3)=16 find the eigenvalues of the recurrence...
consider the linear non-homogeneous recurrence relation of order three x(n)+x(n-1)-4x(n-2)-4x(n-3)=16 find the eigenvalues of the recurrence relation, the closed form solution, and based on the dominant Eigen value determine if x(n) has longterm exponential growth
Solve the following recurrence relation (A) an = 3an-1 + 4an-2 a0 =1, a1 = 1
  Solve the following recurrence relation   (A) an = 3an-1 + 4an-2 a0 =1, a1 = 1   (B) an = 2an-1 - an-2, a0 = 1, a2= 2
Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an =...
Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an = an-1 + 6an-2 - 2n+1 with a0 = -4, a1= 5 b) an = an-1 + 6an-2 + 5 x 3n with a0 = 2, a1 = 5 c) an = an-1 + 6an-2 - 36n with a0 = 10, a1= 40
1. Define the elements of the following equation: P = a0 ‒ a1 × Qd. 2....
1. Define the elements of the following equation: P = a0 ‒ a1 × Qd. 2. Given P = $150 ‒ 0.005 × Qd as the demand for a professional sports team: a. If P = $60, what is Qd? b. If P = $40, what is Qd? 3. Imagine these two possible changes from the demand curve listed in Question 2: a. P = $175 ‒ 0.005 × Qd b. P = $125 ‒ 0.005 × Qd For each,...
Solve the following recurrence relation for the given initial conditions. y(n+2) - 0.3y(n + 1) + 0.02y(n) = 10 y(0) = 2; y(1) = 0
Solve the following recurrence relation for the given initial conditions.y(n+2) - 0.3y(n + 1) + 0.02y(n) = 10        y(0) = 2;    y(1) = 0
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for...
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for all integers n Show all work
6. Solve the following recurrence relations t(n) = t(n-1) + 3 for n>1 t(1) = 0...
6. Solve the following recurrence relations t(n) = t(n-1) + 3 for n>1 t(1) = 0 t(n) = t(n-1) + n   for n>1 t(1) = 1 t(n) = 3t(n/2) + n    for n>1, n is a power of 2 t(1) = ½ t(n) = 6t(n-1) – 9t(n-2)   for n>1 t(0) = 0 t(1) = 1
Show by induction that for all n natural numbers 0+1+4+9+16+...+ n^2 = n(n+1)(2n+1)/6.
Show by induction that for all n natural numbers 0+1+4+9+16+...+ n^2 = n(n+1)(2n+1)/6.
Consider the following recurrence relation defined only for n = 2^k for integers k such that...
Consider the following recurrence relation defined only for n = 2^k for integers k such that k ≥ 1: T(2) = 7, and for n ≥ 4, T(n) = n + T(n / 2). Three students were working together in a study group and came up with this answer for this recurrence: T(n) = n * log2 (n) − n − log2 (n) + 8. Determine if this solution is correct by trying to prove it is correct by induction.
Consider f,g:ℤ→ℤ given by: f(n) = 2n g(n) = n div 2 Which of the following...
Consider f,g:ℤ→ℤ given by: f(n) = 2n g(n) = n div 2 Which of the following statements are true? Select all that apply (a) f is an injection (b) g is an injection (c) f∘g is an injection (d) g∘f is an injection (e) f is a surjection (f) g is a surjection (g) f∘g is a surjection (h) g∘f is a surjection
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT