Question

In: Advanced Math

Consider the following non-homogeneous linear recurrence: an =−an-1 +6an-2+125(8+1)·(n+1)·2n a0 = 0 a1 = 0 (b)...

  1. Consider the following non-homogeneous linear recurrence:

    an =−an-1 +6an-2+125(8+1)·(n+1)·2n

  2. a0 = 0
    a1 = 0

    1. (b) Find the solution an(h) to the associated homogeneous linear recurrence. n

    2. (c) Find a particular solution anp to the non-homogeneous linear recurrence.

    3. (d) Find the general solution to the non-homogeneous linear recurrence.

Solutions

Expert Solution


Related Solutions

Solve the following recurrence relation (A) an = 3an-1 + 4an-2 a0 =1, a1 = 1
  Solve the following recurrence relation   (A) an = 3an-1 + 4an-2 a0 =1, a1 = 1   (B) an = 2an-1 - an-2, a0 = 1, a2= 2
Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an =...
Solve the given non-homogeneous recurrence relations: an = an-1 + 6an-2 + f(n) a) an = an-1 + 6an-2 - 2n+1 with a0 = -4, a1= 5 b) an = an-1 + 6an-2 + 5 x 3n with a0 = 2, a1 = 5 c) an = an-1 + 6an-2 - 36n with a0 = 10, a1= 40
1. Define the elements of the following equation: P = a0 ‒ a1 × Qd. 2....
1. Define the elements of the following equation: P = a0 ‒ a1 × Qd. 2. Given P = $150 ‒ 0.005 × Qd as the demand for a professional sports team: a. If P = $60, what is Qd? b. If P = $40, what is Qd? 3. Imagine these two possible changes from the demand curve listed in Question 2: a. P = $175 ‒ 0.005 × Qd b. P = $125 ‒ 0.005 × Qd For each,...
Solve the following recurrence relation for the given initial conditions. y(n+2) - 0.3y(n + 1) + 0.02y(n) = 10 y(0) = 2; y(1) = 0
Solve the following recurrence relation for the given initial conditions.y(n+2) - 0.3y(n + 1) + 0.02y(n) = 10        y(0) = 2;    y(1) = 0
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for...
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for all integers n Show all work
6. Solve the following recurrence relations t(n) = t(n-1) + 3 for n>1 t(1) = 0...
6. Solve the following recurrence relations t(n) = t(n-1) + 3 for n>1 t(1) = 0 t(n) = t(n-1) + n   for n>1 t(1) = 1 t(n) = 3t(n/2) + n    for n>1, n is a power of 2 t(1) = ½ t(n) = 6t(n-1) – 9t(n-2)   for n>1 t(0) = 0 t(1) = 1
Show by induction that for all n natural numbers 0+1+4+9+16+...+ n^2 = n(n+1)(2n+1)/6.
Show by induction that for all n natural numbers 0+1+4+9+16+...+ n^2 = n(n+1)(2n+1)/6.
Consider the following recurrence relation defined only for n = 2^k for integers k such that...
Consider the following recurrence relation defined only for n = 2^k for integers k such that k ≥ 1: T(2) = 7, and for n ≥ 4, T(n) = n + T(n / 2). Three students were working together in a study group and came up with this answer for this recurrence: T(n) = n * log2 (n) − n − log2 (n) + 8. Determine if this solution is correct by trying to prove it is correct by induction.
1. (2 pts each) Consider the following algorithm: procedure polynomial(c, a0,a1,…an: real numbers) power≔1 y≔a0for i=1...
1. (2 pts each) Consider the following algorithm: procedure polynomial(c, a0,a1,…an: real numbers) power≔1 y≔a0for i=1 to n   power≔power*cy≔y+ai*power return y (Note: y=ancn + an-1 cn-1 +. . . + a1C +a0 so the final value of y is the value of the polynomial at x=c) a. Use the algorithm to calculate f(3), where f(x)=2x2+3x+1 at x=3. Show the steps of working through the algorithm – don’t just plug 3 in for x in f(x). b. How many multiplications and...
1a. Consider the sequence {?? }n≥0 which starts 1,2,7,20,61,122,..., defined by the recurrence relation ?? =...
1a. Consider the sequence {?? }n≥0 which starts 1,2,7,20,61,122,..., defined by the recurrence relation ?? = 2??−1 + 3??−2 and initial conditions ?0 = 1, ?1 = 2. Solve the recurrence relation. That is, find a closed formula for ??. Show your work. The abandoned field behind your house is home to a large prairie dog colony. Each week the size of the colony triples. However, sadly 4 prairie dogs die each week as well (after the tripling occurs). Consider...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT