Question

In: Physics

An 8-pound weight is attached to a spring hanging from a ceiling. The weight stretches the...

  1. An 8-pound weight is attached to a spring hanging from a ceiling. The weight stretches the spring 9.6 inches, coming to rest at its stretched equilibrium position. The weight is displaced 8 inches below this stretched equilibrium position, and at time t = 0 the mass is released. At the same instant, an external force of F(t)= 2cos(2t) pounds is applied to the system. The damping constant is 1 lb/(ft/sec). Find the function that gives the displacement of the mass at any time t. Pay careful attention to the units.

Solutions

Expert Solution


Related Solutions

A mass weighing 8 lb is attached to a spring hanging from the ceiling, and comes...
A mass weighing 8 lb is attached to a spring hanging from the ceiling, and comes to rest at its equilibrium position. The spring constant is 4 lb/ft and there is no damping. A. How far (in feet) does the mass stretch the spring from its natural length? L=   B. What is the resonance frequency for the system? ω0=   C. At time t=0 seconds, an external force F(t)=3cos(ω0t) is applied to the system (where ω0 is the resonance frequency from...
A 8.50 kg mass is attached to the end of a hanging spring and stretches it...
A 8.50 kg mass is attached to the end of a hanging spring and stretches it 28.0 cm. It is then pulled down an additional 12.0 cm and then let go. What is the maximum acceleration of the mass? At what position does this occur? What is the position and velocity of the mass 0.63 s after release?
An 7-kg mass is attached to a spring hanging from the ceiling and allowed to come...
An 7-kg mass is attached to a spring hanging from the ceiling and allowed to come to rest. Assume that the spring constant is 50 N/m and the damping constant is 4 N-sec/m At time t=0, an external force of 8sin(3t)cos(3t) is applied to the system. Determine the amplitude and frequency of the steady-state solution.
1. An 8 pound weight stretches a spring 2 feet. The surrounding medium offers a damping...
1. An 8 pound weight stretches a spring 2 feet. The surrounding medium offers a damping force that is numerically equal to 2 times the instantaneous velocity. It is then released from rest from a point 3 feet below the equilibrium point. a. Determine the equation of motion. b. Is the system underdamped, overdamped, or critically damped?
A 30-pound mass of weight stretches a spring to a 10-foot spring, if the medium surrounding...
A 30-pound mass of weight stretches a spring to a 10-foot spring, if the medium surrounding the system has a damping coefficient, that is, it is equivalent to 5 times the instantaneous speed and the weight is released from a point located at 16 inches below equilibrium position with an initial velocity of 1 foot per second down. A) Deduce the Differential Equation that models the mass-spring system. b) Calculate the displacements (t) at all times t.
A 64 pound weight is attached to the lower end of a coiled spring suspended from...
A 64 pound weight is attached to the lower end of a coiled spring suspended from the ceiling. The weight comes to rest at its equilibrium position, thereby stretching the spring 1/2 foot. At time t = 0, the weight is positioned 1 /√3 feet below equilibrium and given a downward velocity of 8 feet per second. (a) Determine the equation of motion of the weight as a function of time. (b) Find the amplitude of the motion. (c) Find...
Consider a mass-spring system with an iron ball (weight 16 pound force) that stretches 8/9 ft...
Consider a mass-spring system with an iron ball (weight 16 pound force) that stretches 8/9 ft with undamped motion. The spring is initially displaced 6 inches upwards from its equilibrium position and given an initial velocity of 1 ft/s downward. Assume the relation mg=hk. a. Find the displacement at any time t. b. Find the natural frequency of the mass-spring (i.e. iron ball-spring) system. c. How many cycles per minutes will the system execute? d. What would be the amplitude...
1. Assume that hanging a 100 gram mass from a given spring stretches the spring by...
1. Assume that hanging a 100 gram mass from a given spring stretches the spring by 2 cm. If two springs of this kind are connected back to back (series configuration), how much would the combination stretch if a 200 gram mass is suspended? a. 1 cm b. 2 cm c. 3 cm d. 4 cm e. none of these 2. What would be the answer to the previous question if the two springs were connected in parallel configuration? a....
2. A 6-lb weight is attached to a vertically suspended spring that it stretches 4 in....
2. A 6-lb weight is attached to a vertically suspended spring that it stretches 4 in. and to adashpot that provides 1.5 lb of resistance for every foot per second of velocity.(a) If the weight is pulled down 1 ft below its static equilibrium position and then released from rest at time t = 0, find its position function .(b) Find the frequency, time-varying amplitude, and phase angle of the motion.(Give exact answers for both parts.
An ideal spring is in equilibrium, hanging from a ceiling with a 1 kg mass at...
An ideal spring is in equilibrium, hanging from a ceiling with a 1 kg mass at the end. At rest, the length of the hanging spring is 10 cm. Then, an additional 5 kg block is added to the spring, causing its length at rest to increase to 13 cm. The 5 kg block is then removed. Starting from rest, when the 5 kg block is removed, the spring begins to oscillate. What will the spring’s velocity be, the third...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT