Question

In: Physics

An ideal spring is in equilibrium, hanging from a ceiling with a 1 kg mass at...

An ideal spring is in equilibrium, hanging from a ceiling with a 1 kg mass at the end. At rest, the length of the hanging spring is 10 cm. Then, an additional 5 kg block is added to the spring, causing its length at rest to increase to 13 cm. The 5 kg block is then removed. Starting from rest, when the 5 kg block is removed, the spring begins to oscillate.

What will the spring’s velocity be, the third time it returns to a length of 13 cm? Express your answer in units of m/s, but enter only the numeric answer.

Solutions

Expert Solution


Related Solutions

An 7-kg mass is attached to a spring hanging from the ceiling and allowed to come...
An 7-kg mass is attached to a spring hanging from the ceiling and allowed to come to rest. Assume that the spring constant is 50 N/m and the damping constant is 4 N-sec/m At time t=0, an external force of 8sin(3t)cos(3t) is applied to the system. Determine the amplitude and frequency of the steady-state solution.
A mass weighing 8 lb is attached to a spring hanging from the ceiling, and comes...
A mass weighing 8 lb is attached to a spring hanging from the ceiling, and comes to rest at its equilibrium position. The spring constant is 4 lb/ft and there is no damping. A. How far (in feet) does the mass stretch the spring from its natural length? L=   B. What is the resonance frequency for the system? ω0=   C. At time t=0 seconds, an external force F(t)=3cos(ω0t) is applied to the system (where ω0 is the resonance frequency from...
A 8.50 kg mass is attached to the end of a hanging spring and stretches it...
A 8.50 kg mass is attached to the end of a hanging spring and stretches it 28.0 cm. It is then pulled down an additional 12.0 cm and then let go. What is the maximum acceleration of the mass? At what position does this occur? What is the position and velocity of the mass 0.63 s after release?
A spring is hanging motionless from the ceiling of a room on the earth. You attach...
A spring is hanging motionless from the ceiling of a room on the earth. You attach a mass to the end of the spring and after releasing the mass, you observe that the spring extends a distance  before momentarily coming to a halt. What then must be the distance below just the spring's equilibrium position to the new equilibrium position of the spring-mass system? A. B. C. D. A spring is hanging downward from the ceiling of a room on the...
An ideal spring dangles from the ceiling at its relaxed length of 5 cm. A 3-kg...
An ideal spring dangles from the ceiling at its relaxed length of 5 cm. A 3-kg mass is carefully hung from the end of the spring while the spring is relaxed, and then the mass is released from rest at time t = 0, which begins to stretch the spring. The spring stretches to its maximum length at time t = 130 ms when the mass reaches its lowest point. Then the mass returns upward, shortening the spring. The oscillation...
1. Assume that hanging a 100 gram mass from a given spring stretches the spring by...
1. Assume that hanging a 100 gram mass from a given spring stretches the spring by 2 cm. If two springs of this kind are connected back to back (series configuration), how much would the combination stretch if a 200 gram mass is suspended? a. 1 cm b. 2 cm c. 3 cm d. 4 cm e. none of these 2. What would be the answer to the previous question if the two springs were connected in parallel configuration? a....
An 8-pound weight is attached to a spring hanging from a ceiling. The weight stretches the...
An 8-pound weight is attached to a spring hanging from a ceiling. The weight stretches the spring 9.6 inches, coming to rest at its stretched equilibrium position. The weight is displaced 8 inches below this stretched equilibrium position, and at time t = 0 the mass is released. At the same instant, an external force of F(t)= 2cos(2t) pounds is applied to the system. The damping constant is 1 lb/(ft/sec). Find the function that gives the displacement of the mass...
1. A pendulum is formed by taking a 1.0 kg mass and hanging it from the...
1. A pendulum is formed by taking a 1.0 kg mass and hanging it from the ceiling using a steel wire with a diameter of 1.1 mm. It is observed that the wire stretches by 0.05 mm under the weight of the mass. What is the period of oscillation of the pendulum? 2. In order to study the long-term effects of weightlessness, astronauts in space must be weighed (or at least "massed"). One way in which this is done is...
A mass hanging from a spring oscillates with a period of 0.35 s. Suppose the mass...
A mass hanging from a spring oscillates with a period of 0.35 s. Suppose the mass and spring are swung in a horizontal circle, with the free end of the spring at the pivot. What rotation frequency, in rpm, will cause the spring’s length to stretch by 15%?
A mass hangs from the ceiling by a spring. It takes the mass 700 ms to...
A mass hangs from the ceiling by a spring. It takes the mass 700 ms to fall from its maximum height of 2.3m to its minimum height of 1.6m above the floor. (a) At what height above the floor does the mass have zero acceleration? (b) What is the maximum speed of this mass? (c) If you start a timer ( t = 0) at the moment when the mass is falling below a height of 1.9m, then at what...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT