Question

In: Physics

1. Assume that hanging a 100 gram mass from a given spring stretches the spring by...

1. Assume that hanging a 100 gram mass from a given spring stretches the spring by 2 cm. If two springs of this kind are connected back to back (series configuration), how much would the combination stretch if a 200 gram mass is suspended?

a. 1 cm

b. 2 cm

c. 3 cm

d. 4 cm

e. none of these

2. What would be the answer to the previous question if the two springs were connected in parallel configuration?

a. 1 cm

b. 2 cm

c. 3 cm

d. 4 cm

e. none of these

Solutions

Expert Solution

According to Hook's law, the restoring force on a spring is given by,

where,

F is the force of extension, which is equal to the weight of the body hung (F=mg)

k is the spring constant of the spring

x is the extension produced.

Given,

100g produces an extension of 2cm

Therfore,

m=100g = 0.1kg

F = mg = 0.1x9.8 = 0.98N

x = 2cm = 0.02m

From equation (1)

Hence spring constant k of the spring is 49Nm

a) Two spings of this kind are connected in series

When connected in series, the effective spring constant is given by,

Here both the springs are same, so

Hence in this case,

m = 200g = 0.2kg

F = mg = 0.2x 9.8 = 1.96N

Therefore from equation (1)

Hence the extension produced is 0.08m or 8cm. Since such an option is not available, None of these will be the answer.

b) Two spings of this kind are connected in parallel

When connected in parallel, the effective spring constant is given by,

Here both the springs are same, so

Hence in this case,

m = 200g = 0.2kg

F = mg = 0.2x 9.8 = 1.96N

Therefore from equation (1)

Hence the extension produced is 0.02m or 2cm. So option b is the correct answer.


Related Solutions

A 8.50 kg mass is attached to the end of a hanging spring and stretches it...
A 8.50 kg mass is attached to the end of a hanging spring and stretches it 28.0 cm. It is then pulled down an additional 12.0 cm and then let go. What is the maximum acceleration of the mass? At what position does this occur? What is the position and velocity of the mass 0.63 s after release?
A 50-gram mass is hanging from a spring whose unstretched length is 10 cm and whose...
A 50-gram mass is hanging from a spring whose unstretched length is 10 cm and whose spring constant is 2.5 N/m. In the list below are described five situations. In some of the situations, the mass is at rest and remains at rest. In other situations, at the instant described, the mass is in the middle of an oscillation initiated by a person pulling the mass downward 5 cm from its equilibrium position and releasing it. Ignore both air resistance...
An 8-pound weight is attached to a spring hanging from a ceiling. The weight stretches the...
An 8-pound weight is attached to a spring hanging from a ceiling. The weight stretches the spring 9.6 inches, coming to rest at its stretched equilibrium position. The weight is displaced 8 inches below this stretched equilibrium position, and at time t = 0 the mass is released. At the same instant, an external force of F(t)= 2cos(2t) pounds is applied to the system. The damping constant is 1 lb/(ft/sec). Find the function that gives the displacement of the mass...
An ideal spring is in equilibrium, hanging from a ceiling with a 1 kg mass at...
An ideal spring is in equilibrium, hanging from a ceiling with a 1 kg mass at the end. At rest, the length of the hanging spring is 10 cm. Then, an additional 5 kg block is added to the spring, causing its length at rest to increase to 13 cm. The 5 kg block is then removed. Starting from rest, when the 5 kg block is removed, the spring begins to oscillate. What will the spring’s velocity be, the third...
A 10 10 kilogram object suspended from the end of a vertically hanging spring stretches the...
A 10 10 kilogram object suspended from the end of a vertically hanging spring stretches the spring 9.8 9.8 centimeters. At time ?=0 t = 0 , the resulting mass-spring system is disturbed from its rest state by the force ?(?)=70cos(8?) F ( t ) = 70 cos ( 8 t ) . The force ?(?) F ( t ) is expressed in Newtons and is positive in the downward direction, and time is measured in seconds. a) Determine the...
A mass weighing 8 pounds stretches a spring 1 foot. The mass is initially released from...
A mass weighing 8 pounds stretches a spring 1 foot. The mass is initially released from rest from a point 2 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 2 times the instantaneous velocity. Find the equation of motion (solve the IVP) if the mass is driven by an external force equal to f(t) = 5 cos(2t). Graph the solution. What part of the...
A mass hanging from a spring oscillates with a period of 0.35 s. Suppose the mass...
A mass hanging from a spring oscillates with a period of 0.35 s. Suppose the mass and spring are swung in a horizontal circle, with the free end of the spring at the pivot. What rotation frequency, in rpm, will cause the spring’s length to stretch by 15%?
A mass weighing 8 lb stretches a spring 1/2 foot. Then mass is initially released from...
A mass weighing 8 lb stretches a spring 1/2 foot. Then mass is initially released from rest at a point 1 foot above the equilibrium. a) Solve the equation of motion with no damping. Use the same spring system and initial conditions as in Problem above. The spring system is now placed in a medium that offers a damping force equal to 2 times the instantaneous velocity. b) Solve the equation of motion c) At what time does the mass...
A mass m, stretches horizontally from a spring which has spring constant k, and is subjected...
A mass m, stretches horizontally from a spring which has spring constant k, and is subjected to a retarding force equal to bv, where v is the instantaneous velocity of the mass. A particle of mass 10 gm moves along the x axis under the influence of two forces. The first is a force (in g cm s-2) of attraction to the origin O which is 40 times the distance from O. The second is a damping force proportional to...
A mass 7kg of stretches a spring 18cm. The mass is acted on by an external...
A mass 7kg of stretches a spring 18cm. The mass is acted on by an external force of 5sin(t/2) N and moves in a medium that imparts a viscous force of 4N when the speed of the mass is 8cm/s. If the mass is set in motion from its equilibrium position with an initial velocity of 4cm/s, determine the position of the mass at any time t. Use 9.8m/s2 as the acceleration due to gravity. Pay close attention to the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT