Question

In: Statistics and Probability

Consider n components of a system having independently exponentially distributed lifetimes so that Xn ~ exp(θ)...

Consider n components of a system having independently exponentially distributed lifetimes so that Xn ~ exp(θ)

a) For a single component, find the reliability to time t1 + t2 given that the component has already lived past time t1. Why is the constant failure rate referred to as the “memory-less” property?

b) For the series of n components, find an expression for Rs(t). What is the mean lifetime of the system?

Solutions

Expert Solution

The constant failure rate and the memory-less property is explained in the solution.

The components of the system are in series. The expression for reliability is solved accordingly.


Related Solutions

Question 5. Consider n components of a system having independently exponentially distributed lifetimes so that Xn...
Question 5. Consider n components of a system having independently exponentially distributed lifetimes so that Xn ~ exp(θ) a) For a single component, find the reliability to time t1 + t2 given that the component has already lived past time t1. Why is the constant failure rate referred to as the “memory-less” property? b) For the series of n components, find an expression for Rs(t). What is the mean lifetime of the system?
Let X1, . . . , Xn ∼ iid Exp(θ) and consider the test for H0...
Let X1, . . . , Xn ∼ iid Exp(θ) and consider the test for H0 : θ ≥ θ0 vs H1 : θ < θ0. (a) Find the size-α LRT. Express the rejection region in the form of R = {X > c ¯ } where c will depend on a value from the χ 2 2n distribution. (b) Find the appropriate value of c. (c) Find the formula for the P-value of this test. (d) Compare this test...
Suppose that (X1, · · · , Xn) is a sample from the normal distribution N(θ,...
Suppose that (X1, · · · , Xn) is a sample from the normal distribution N(θ, θ^2 ) with θ ∈ R. Find an MLE of θ.
If assume collection of modules have exponentially distributed lifetimes (age of component doesn't matter in failure...
If assume collection of modules have exponentially distributed lifetimes (age of component doesn't matter in failure probability) and modules fail independently, overall failure rate of collection is sum of failure rates of modules. Calculate MTTF of a disk subsystem with 10 disks, each rated at 1,000,000 hour MTTF 1 SCSI controller, 500,000 hour MTTF 1 power supply, 200,000 hour MTTF 1 fan, 200,000 MTTF 1 SCSI cable, 1,000,000 hour MTTF Failure Rate? MTTF? What if 1000,000 MTTF > 100 years,...
Let X1,...,Xn be i.i.d. N(θ,1), where θ ∈ R is the unknown parameter. (a) Find an...
Let X1,...,Xn be i.i.d. N(θ,1), where θ ∈ R is the unknown parameter. (a) Find an unbiased estimator of θ^2 based on (Xn)^2. (b) Calculate it’s variance and compare it with the Cram ́er-Rao lower bound.
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. a) What is the constant c? b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased? c) Please calculate the Crameer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB).
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. a) Find the distribution of Y = (X1 + ... + Xn)/n where X1, ..., Xn is an i.i.d. sample from fX(x, θ). If you can’t find Y, can you find an approximation of Y when n is large? b) Find the best estimator, i.e. MVUE, of θ?
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. (Please note the equation includes the term -(x/θ)2 or -(x/θ)^2 if you cannot read that) a) What is the constant c? b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased? c) Please calculate the Cramer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB).
The random variable X is distributed with pdffX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. (Please...
The random variable X is distributed with pdffX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. (Please note the equation includes the term -(x/θ)2 - that is -(x/θ)^2 if your computer doesn't work) a) What is the constant c? b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased? c) Please calculate the Cramer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB)....
Let X1,...,Xn be exponentially distributed independent random variables with parameter λ. (a) Find the pdf of...
Let X1,...,Xn be exponentially distributed independent random variables with parameter λ. (a) Find the pdf of Yn= max{X1,...,Xn}. (b) Find E[Yn]. (c) Find the median of Yn. (d) What is the mean for n= 1, n= 2, n= 3? What happens as n→∞? Explain why.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT