Question

In: Statistics and Probability

The random variable X is distributed with pdffX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. (Please...

The random variable X is distributed with pdffX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. (Please note the equation includes the term -(x/θ)2 - that is -(x/θ)^2 if your computer doesn't work)

a) What is the constant c?

b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased?

c) Please calculate the Cramer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB).

Note: If you do the equation using the term -(2x/θ) it is wrong. If you can't read the equation, please don't do the work. Thanks.

Solutions

Expert Solution


Related Solutions

The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. a) What is the constant c? b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased? c) Please calculate the Crameer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB).
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. a) Find the distribution of Y = (X1 + ... + Xn)/n where X1, ..., Xn is an i.i.d. sample from fX(x, θ). If you can’t find Y, can you find an approximation of Y when n is large? b) Find the best estimator, i.e. MVUE, of θ?
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. (Please note the equation includes the term -(x/θ)2 or -(x/θ)^2 if you cannot read that) a) What is the constant c? b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased? c) Please calculate the Cramer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB).
For a random variable X with a Cauchy distribution with θ = 0 , so that...
For a random variable X with a Cauchy distribution with θ = 0 , so that f(x) =(1/ π)/( 1 + x^2) for -∞ < x < ∞ (a) Show that the expected value of the random variable X does not exist. (b) Show that the variance of the random variable X does not exist. (c) Show that a Cauchy random variable does not have finite moments of order greater than or equal to one.
For f(x; θ) = θ exp(-xθ) , x>0 1a) Determine the most powerful critical region for...
For f(x; θ) = θ exp(-xθ) , x>0 1a) Determine the most powerful critical region for testing H0 θ=θ0 against H1 θ=θ1 (θ1 > θ0) using a random sample of size n. 1b) Find the uniformly most powerful H0 θ<θ0 against H1 θ>θ1
Suppose X and Y are independent random variables with Exp(θ = 2) distribution. Note that, we...
Suppose X and Y are independent random variables with Exp(θ = 2) distribution. Note that, we say X ∼ Exp(θ) if its pdf is f(x) = 1/θ e^(−x/θ) , for x > 0 and θ > 0. (a) What is the joint probability density function (pdf) of (X, Y )? (b) Use the change of variable technique (transformation technique) to evaluate the joint pdf fW,Z (w, z) of (W, Z), where W = X −Y and Z = Y ....
a. Suppose that X is a discrete random variable with pmf f(x) = (2 + θ(2...
a. Suppose that X is a discrete random variable with pmf f(x) = (2 + θ(2 − x))/ 6 , x = 1, 2, 3, where the parameter θ belongs to the parameter space Ω = (θ : −2 < θ < 2). Suppose further that a random sample X1, X2, X3, X4 is taken from this distribution, and the four observed values are {x1, x2, x3, x4} = {3, 2, 3, 1}. Find the maximum likelihood estimate of θ....
Assume a random variable X with four possible outcomes {1,2,3,4}, each with the probability θ/2, θ/2,...
Assume a random variable X with four possible outcomes {1,2,3,4}, each with the probability θ/2, θ/2, (1-θ)/3, and (2-2θ)/3, respectively. We observe the following samples {1,1,1,2,2,3,3,4,4,4}. Derive the maximum likelihood estimate of θ.
Does a continuous random variable X exist with E(X − a) = 0, where a is...
Does a continuous random variable X exist with E(X − a) = 0, where a is the day of your birthdate? If yes, give an example for its probability density function. If no, give an explanation. (b) Does a continuous random variable Y exist with E (Y − b) 2 = 0, where b is the month of your birthdate? If yes, give an example for its probability density function. If no, give an explanation.
If the random variable x~N(0,c^2), and g(x)=x^2, find and sketch the distribution and density function of...
If the random variable x~N(0,c^2), and g(x)=x^2, find and sketch the distribution and density function of the random variable y=g(x).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT