Question

In: Statistics and Probability

Let X1,...,Xn be exponentially distributed independent random variables with parameter λ. (a) Find the pdf of...

Let X1,...,Xn be exponentially distributed independent random variables with parameter λ.

(a) Find the pdf of Yn= max{X1,...,Xn}.

(b) Find E[Yn].

(c) Find the median of Yn.

(d) What is the mean for n= 1, n= 2, n= 3? What happens as n→∞? Explain why.

Solutions

Expert Solution


Related Solutions

Let X1, X2,..., Xnbe independent and identically distributed exponential random variables with parameter λ . a)...
Let X1, X2,..., Xnbe independent and identically distributed exponential random variables with parameter λ . a) Compute P{max(X1, X2,..., Xn) ≤ x} and find the pdf of Y = max(X1, X2,..., Xn). b) Compute P{min(X1, X2,..., Xn) ≤ x} and find the pdf of Z = min(X1, X2,..., Xn). c) Compute E(Y) and E(Z).
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on...
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on the interval [0, θ]. (a) Find the pdf of X(j) , the j th order statistic. (b) Use the result from (a) to find E(X(j)). (c) Use the result from (b) to find E(X(j)−X(j−1)), the mean difference between two successive order statistics. (d) Suppose that n = 10, and X1, . . . , X10 represents the waiting times that the n = 10...
Suppose X1, X2, . . ., Xn are iid Poisson random variables with parameter λ. (a)...
Suppose X1, X2, . . ., Xn are iid Poisson random variables with parameter λ. (a) Find the MVUE for λ. (b) Find the MVUE for λ 2
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi...
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi is geometric with respective parameter pi. It is known that the mean of X is equal to μ, where μ > 0. Show that the variance of X is minimized if the pi's are all equal to n/μ. 2. Suppose that each Xi is Bernoulli with respective parameter pi. It is known that the mean of X is equal to μ, where μ >...
Let X1,…, Xn be a sample of iid random variables with pdf f (x; ?1, ?2)...
Let X1,…, Xn be a sample of iid random variables with pdf f (x; ?1, ?2) = ?1 e^(−?1(x−?2)) with S = [?2, ∞) and Θ = ℝ+ × ℝ. Determine a) L(?1, ?2). b) the MLE of ?⃗ = (?1, ?2). c) E(? ̂ 2).
Let X1,X2,...,Xn be i.i.d. Gamma random variables with parameters α and λ. The likelihood function is...
Let X1,X2,...,Xn be i.i.d. Gamma random variables with parameters α and λ. The likelihood function is difficult to differentiate because of the gamma function. Rather than finding the maximum likelihood estimators, what are the method of moments estimators of both parameters α and λ?
Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. (...
Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. ( a) Compute the cdf of Y := min(X1, . . . , Xn). (b) Use (a) to compute the pdf of Y . (c) Find E(Y ).
Let X1, X2, . . . be a sequence of independent and identically distributed random variables...
Let X1, X2, . . . be a sequence of independent and identically distributed random variables where the distribution is given by the so-called zero-truncated Poisson distribution with probability mass function; P(X = x) = λx/ (x!(eλ − 1)), x = 1, 2, 3... Let N ∼ Binomial(n, 1−e^−λ ) be another random variable that is independent of the Xi ’s. 1) Show that Y = X1 +X2 + ... + XN has a Poisson distribution with mean nλ.
Let X1,…, Xn be a sample of iid Exp(?1, ?2) random variables with common pdf f...
Let X1,…, Xn be a sample of iid Exp(?1, ?2) random variables with common pdf f (x; ?1, ?2) = 1/ ?1 e^ −( x−?2)/ ?1 for x > ?2 and Θ = ℝ × ℝ+. a) Show that S = (X(1), ∑n i=1 Xi ) is jointly sufficient for (?1, ?2). b) Determine the pdf of X(1). c) Determine E[X(1)]. d) Determine E[X^2 (1) ]. e) Determine Var[X(1)]. f ) Is X(1) an MSE-consistent estimator of ?2? g) Given...
If X and Y are independent exponential random variables, each having parameter λ  =  6, find...
If X and Y are independent exponential random variables, each having parameter λ  =  6, find the joint density function of U  =  X + Y  and  V  =  e 2X. The required joint density function is of the form fU,V (u, v)  =  { g(u, v) u  >  h(v), v  >  a 0 otherwise (a) Enter the function g(u, v) into the answer box below. (b) Enter the function h(v) into the answer box below. (c) Enter the value...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT