Question

In: Statistics and Probability

Let X1, . . . , Xn ∼ iid Exp(θ) and consider the test for H0...

Let X1, . . . , Xn ∼ iid Exp(θ) and consider the test for H0 : θ ≥ θ0 vs H1 : θ < θ0.

(a) Find the size-α LRT. Express the rejection region in the form of R = {X > c ¯ } where c will depend on a value from the χ 2 2n distribution.

(b) Find the appropriate value of c.

(c) Find the formula for the P-value of this test.

(d) Compare this test to the Karlin-Rubin UMP test.

Solutions

Expert Solution

Solution:


Related Solutions

Let X1, . . . , Xn ∼ iid N(θ, σ2 ), with one-sided hypotheses H0...
Let X1, . . . , Xn ∼ iid N(θ, σ2 ), with one-sided hypotheses H0 : θ ≤ θ0 vs H1 : θ > θ0. (a) If σ^2 is known, we can use the UMP size-α test. Find the formula for the P-value of this test.
Let X1, . . . , Xn ∼ iid Beta(θ, 1). (a) Find the UMP test...
Let X1, . . . , Xn ∼ iid Beta(θ, 1). (a) Find the UMP test for H0 : θ ≥ θ0 vs H1 : θ < θ0. (b) Find the corresponding Wald test. (c) How do these tests compare and which would you prefer?
Let X1, . . . , Xn ∼ iid Unif(0, θ). (a) Is this family MLR...
Let X1, . . . , Xn ∼ iid Unif(0, θ). (a) Is this family MLR in Y = X(n)? (b) Find the UMP size-α test for H0 : θ ≤ θ0 vs H1 : θ > θ0. (c) Find the UMP size-α test for H0 : θ ≥ θ0 vs H1 : θ < θ0. (d) Letting R1 be the rejection region for the test in part (b) and R2 be the rejection region for the test in part...
Let X1,…, Xn be a sample of iid N(0, ?) random variables with Θ=(0, ∞). Determine...
Let X1,…, Xn be a sample of iid N(0, ?) random variables with Θ=(0, ∞). Determine a) the MLE ? of ?. b) E(? ̂). c) the asymptotic variance of the MLE of ?. d) the MLE of SD(Xi ) = √ ?.
Let X1,…, Xn be a sample of iid Exp(?1, ?2) random variables with common pdf f...
Let X1,…, Xn be a sample of iid Exp(?1, ?2) random variables with common pdf f (x; ?1, ?2) = 1/ ?1 e^ −( x−?2)/ ?1 for x > ?2 and Θ = ℝ × ℝ+. a) Show that S = (X(1), ∑n i=1 Xi ) is jointly sufficient for (?1, ?2). b) Determine the pdf of X(1). c) Determine E[X(1)]. d) Determine E[X^2 (1) ]. e) Determine Var[X(1)]. f ) Is X(1) an MSE-consistent estimator of ?2? g) Given...
Let X1, X2, · · · , Xn be iid samples from density: f(x) = {θx^(θ−1),...
Let X1, X2, · · · , Xn be iid samples from density: f(x) = {θx^(θ−1), if 0 ≤ x ≤ 1} 0 otherwise Find the maximum likelihood estimate for θ. Explain, using Strong Law of Large Numbers, that this maximum likelihood estimate is consistent.
Let X1, X2, . . . , Xn iid∼ N (µ, σ2 ). Consider the hypotheses...
Let X1, X2, . . . , Xn iid∼ N (µ, σ2 ). Consider the hypotheses H0 : µ = µ0 and H1 : µ (not equal)= µ0 and the test statistic (X bar − µ0)/ (S/√ n). Note that S has been used as σ is unknown. a. What is the distribution of the test statistic when H0 is true? b. What is the type I error of an α−level test of this type? Prove it. c. What is...
) Let X1, . . . , Xn be iid from the distribution with parameter η...
) Let X1, . . . , Xn be iid from the distribution with parameter η and probability density function: f(x; η) = e ^(−x+η) , x > η, and zero otherwise. 1. Find the MLE of η. 2. Show that X_1:n is sufficient and complete for η. 3. Find the UMVUE of η.
Let X1, ..., Xn be iid with pdf f(x; θ) = (1/ x√ 2π) e(-(logx- theta)^2)...
Let X1, ..., Xn be iid with pdf f(x; θ) = (1/ x√ 2π) e(-(logx- theta)^2) /2 Ix>0 for θ ∈ R. (a) (15 points) Find the MLE of θ. (b) (10 points) If we are testing H0 : θ = 0 vs Ha : θ != 0. Provide a formula for the likelihood ratio test statistic λ(X). (c) (5 points) Denote the MLE as ˆθ. Show that λ(X) is can be written as a decreasing function of | ˆθ|...
Let X1, . . . , Xn i.i.d. Uniform(θ, θ + 1). Show that: ˆθ1 =...
Let X1, . . . , Xn i.i.d. Uniform(θ, θ + 1). Show that: ˆθ1 = X¯ − 1 2 and ˆθ2 = X(n) − n n + 1 are both consistent estimators for θ.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT