In: Math
1.The domain of r(t)=〈sin(t),cos(t),ln(t+1)〉 is
Select one:
a. (−∞,−1]
b. (π,2π)
c. (−∞,−2]
d. (−π,2π)
e. ℝ
f. (−1,∞)
2. The limt→πr(t) where r(t)=〈t2,et,cos(t)〉 is
Select one:
a. 〈π2,eπ,−1〉
b. undefined
c. 〈π2,eπ,1〉
d. π2+eπ
e. 〈π2,eπ,0〉
3.Let v(t)=〈2t,4t,t2〉. Then the length of v′(t) is
Select one:
a. 20‾‾‾√+2t
b. 20+4t2
c. 20+2t‾‾‾‾‾‾‾√
d. 20+4t2‾‾‾‾‾‾‾‾√
e. 6+2t‾‾‾‾‾‾√
f. 1
4. The curvature of a circle centred at the origin with radius 1/3 is
Select one:
a. 1
b. 1/3
c. undefined
d. 3
e. 10
1.
sin(t) is defined for all real values of t.
cos(t) is defined for all real values of t.
ln(t+1) is defined when
Thus, ln(t+1) is defined on the interval (-1, ).
Hence, the domain of r(t) = 〈sin(t),cos(t),ln(t+1)〉 is
2.
Given that
Hence, the limit is
3.
Given that
The length of v′(t) is
4.
The parametrization of the circle centered at the origin with radius 1/3 is
The unit tangent vector T(t) is defined as
Hence, the curvature of the circle centered at the origin with radius 1/3 is