Question

In: Math

2. Evaluate the following limits. (a) lim x→1+ ln(x) /ln(x − 1) (b) limx→2π x sin(x)...

2. Evaluate the following limits.

(a) lim x→1+

ln(x) /ln(x − 1)

(b) limx→2π

x sin(x) + x ^2 − 4π^2/x − 2π

(c) limx→0

sin^2 (3x)/x^2

Solutions

Expert Solution

(a)

The right limit of ln(x) at 1 is 0.

The right limit of ln(x-1) at 1 is .

Hence,

(b)

By substituting x = 2 in the function, we get the indeterminate form 0/0. Hence, we need to apply the L'Hopital's

rule.

(c)


Related Solutions

Evaluate the following limits using l'Hopital's rule. (a) lim x→0 (sin(x)−x)/(x^2) (b) lim x→0 (1/x) −...
Evaluate the following limits using l'Hopital's rule. (a) lim x→0 (sin(x)−x)/(x^2) (b) lim x→0 (1/x) − (1/e^x−1) (c) lim x→0+ (x^√ x)
Use MuPAD to compute the following limits. a. lim x* x0+ b. lim (cos x)/tan
Use MuPAD to compute the following limits.  a. lim x* x0+ b. lim (cos x)/tan 
L'Hospitals rule find the limits a) lim   (tanx−secx) x→π/2- (b) lim    (lnx-1) / (x-e)      x→e...
L'Hospitals rule find the limits a) lim   (tanx−secx) x→π/2- (b) lim    (lnx-1) / (x-e)      x→e (c)   lim       x^(1/lnx)        x→0+
1.The domain of r(t)=〈sin(t),cos(t),ln(t+1)〉 is Select one: a. (−∞,−1] b. (π,2π) c. (−∞,−2] d. (−π,2π) e....
1.The domain of r(t)=〈sin(t),cos(t),ln(t+1)〉 is Select one: a. (−∞,−1] b. (π,2π) c. (−∞,−2] d. (−π,2π) e. ℝ f. (−1,∞) 2. The limt→πr(t) where r(t)=〈t2,et,cos(t)〉 is Select one: a. 〈π2,eπ,−1〉 b. undefined c. 〈π2,eπ,1〉 d. π2+eπ e. 〈π2,eπ,0〉 3.Let v(t)=〈2t,4t,t2〉. Then the length of v′(t) is Select one: a. 20‾‾‾√+2t b. 20+4t2 c. 20+2t‾‾‾‾‾‾‾√ d. 20+4t2‾‾‾‾‾‾‾‾√ e. 6+2t‾‾‾‾‾‾√ f. 1 4. The curvature of a circle centred at the origin with radius 1/3 is Select one: a. 1 b. 1/3 c....
(15) Evaluate each of the following integrals. (a) Z cos(x) ln(sin(x)) dx (b) Z x arcsin(x...
(15) Evaluate each of the following integrals. (a) Z cos(x) ln(sin(x)) dx (b) Z x arcsin(x 2 ) dx (c) Z 1 0 ln(1 + x 2 ) dx (d) Z 1/4 0 arcsin(2x) dx (16) Use the table of integrals to evaluate the integrals, if needed. You may need to transform the integrand first. (a) Z cos(4t) cos(5t)dt (b) Z 1 cos3 (x) dx (c) Z 1 x 2 + 6x + 9 dx (d) Z 1 50 −...
lim[(tanx-1)/x] as x->0. lim[ (1+sin(4x))^cot(x)] as x -> 0 from the positive side. lim[ [(a^(1/x) +...
lim[(tanx-1)/x] as x->0. lim[ (1+sin(4x))^cot(x)] as x -> 0 from the positive side. lim[ [(a^(1/x) + b^(1/x))/2]^x] as x -> infinity
lim x approaches infinity of (6x^3+11x^2+12)^(1/ln(x)
lim x approaches infinity of (6x^3+11x^2+12)^(1/ln(x)
USING MATLAB.... a.) Create anonymous functions: fa(x)=sin(x^2) fb(x)=sin^2(x) b.) Evaluate them both at x=1/2 pi c.)Evaluate...
USING MATLAB.... a.) Create anonymous functions: fa(x)=sin(x^2) fb(x)=sin^2(x) b.) Evaluate them both at x=1/2 pi c.)Evaluate them both at x=(0,1,2,...,10)^T d.) Calculate fa(fb(2)) and fb(fa(2))
1. a. Evaluate the following limit: lim ?→4 ( 2? 3−128 √?−2 ) (8 marks) b....
1. a. Evaluate the following limit: lim ?→4 ( 2? 3−128 √?−2 ) b. Find the number ? ???ℎ ?ℎ?? lim ?→−2 ( 3? 2+??+?+3 ? 2+?−2 ) exists, then find the limit
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2 + (cos(x))^2 (a) Find...
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2 + (cos(x))^2 (a) Find the open intervals on which the function is increasing or decreasing. (Enter your answers using interval notation.) increasing decreasing (b) Apply the First Derivative Test to identify the relative extrema. relative maximum (x, y) = relative minimum (x, y) =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT