Question

In: Mechanical Engineering

Air enters a duct operating at steady state with a mass flow rate of 3 kg/s...

Air enters a duct operating at steady state with a mass flow rate of 3 kg/s a pressure of 1.2 bar and a temperature of 320 K the air exits at a pressure of .8 bar and a temperature of 360 K and there is a heat loss of 20 kW to the surroundings which are at a temperature of 300 K modeling air as an ideal gas determine the entropy production of the process in kilowatts per

Solutions

Expert Solution

please leave rating thank u


Related Solutions

At steady state, air at 200 kPa, 330 K, and mass flow rate of 0.5 kg/s...
At steady state, air at 200 kPa, 330 K, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. The inlet cross-sectional area is 6 cm2. At the duct exit, the pressure of the air is 100 kPa and the velocity is 250 m/s. Neglecting potential energy effects and modeling air as an ideal gas with constant cp = 1.008 kJ/kg · K, determine: (a) the velocity of the air at the...
Methane (CH4) enters a compressor operating at steady state with a mass flow rate of 170...
Methane (CH4) enters a compressor operating at steady state with a mass flow rate of 170 lbm/hr. The methane enters the compressor at p1 = 15 lbf/in2 , T1 = 80F and exits at p2 = 100 lbf/in2 . The work input to the compressor is 15 hp. Assume ideal gas behavior for the methane with constant specific heats (cp = 0.538 Btu/lbm·R, cv = 0.414 Btu/lbm·R). Kinetic and potential energy effects are negligible and the compressor is insulated 1)Determine...
Hot air flows with a mass flow rate of 0.05 kg/s through an insulated square duct...
Hot air flows with a mass flow rate of 0.05 kg/s through an insulated square duct with side of 0.15m, the hot air enters at 103 oC and after a distance of 5m, cools to 85 oC. The heat transfer coefficient between the duct outer surface and the ambient air (Tair = 0 oC) is 6 W/m2 K. Calculate the heat transfer coefficient between hot air and duct inner wall. Air Cp = 1.011 KJ/kg K; air k = 0.0306...
Consider the following combined cycle. The mass flow rate of air is 73 kg/s. Air enters...
Consider the following combined cycle. The mass flow rate of air is 73 kg/s. Air enters the compressor at state 1 with Patm =1 atm and Tamb = 20°C. The compressor has a pressure ratio of 7.5 and an efficiency ?c = 0.85. Air enters the combustor and is heated to a temperature TH = 1250°C. The turbine has an efficiency of ?t,1 = 0.87. The air leaving the turbine enters the steam boiler where it transfers heat to the...
An air compressor is operating at a steady state. The air enters at with a volumetric...
An air compressor is operating at a steady state. The air enters at with a volumetric flow rate 1.2 m^3/s at 170 kPa and 22 degrees celsius with negligible velocity and leaves at 1500 kPa with velocity of 200 m/s. The power to the compressor is 60 kW and the compressor is cooled at a rate of 15 kJ/kg. Determine the exit area.
Air enters a horizontal, constant-diameter heating duct operating at steady state at 280 K, 1 bar,...
Air enters a horizontal, constant-diameter heating duct operating at steady state at 280 K, 1 bar, with a volumetric flow rate of 0.25 m3/s, and exits at 325 K, 0.95 bar. The flow area is 0.05 m2. Assuming the ideal gas model with k = 1.4 for the air, determine: (a) the mass flow rate, in kg/s, (b) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer to the air, in kW
Saturated water vapor at 300F enters a compressor operating at steady state with a mass flow...
Saturated water vapor at 300F enters a compressor operating at steady state with a mass flow rate of 5 lb/s and is compressed adiabatically to 750 psi. Determine: a) The percent isentropic compressor efficiency. b) The rate of entropy production, in hp/R.
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow...
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow rate of 5 lb/s and is compressed adiabatically to 750 lbf/in.2 If the power input is 2150 hp, determine for the compressor: (a) the percent isentropic compressor efficiency and (b) the rate of entropy production, in hp/°R. Ignore kinetic and potential energy effects.
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow...
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow rate of 5 lb/s and is compressed adiabatically to 650 lbf/in.2 If the power input is 2150 hp, determine for the compressor: (a) the percent isentropic compressor efficiency and (b) the rate of entropy production, in hp/°R. Ignore kinetic and potential energy effects.
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow...
Saturated water vapor at 300°F enters a compressor operating at steady state with a mass flow rate of 5 lb/s and is compressed adiabatically to 650 lbf/in.2 If the power input is 2150 hp, determine for the compressor: (a) the percent isentropic compressor efficiency and (b) the rate of entropy production, in hp/°R. Ignore kinetic and potential energy effects.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT