Question

In: Civil Engineering

An air compressor is operating at a steady state. The air enters at with a volumetric...

An air compressor is operating at a steady state. The air enters at with a volumetric flow rate 1.2 m^3/s at 170 kPa and 22 degrees celsius with negligible velocity and leaves at 1500 kPa with velocity of 200 m/s. The power to the compressor is 60 kW and the compressor is cooled at a rate of 15 kJ/kg. Determine the exit area.

Solutions

Expert Solution

Good Morning Sir/Madam

The problem given is solved by using any of the two theorems given below:

1. CONSERVATION OF MASS (CONTINUITY

EQUATION)

2. CONSERVATION OF ENERGY (BERNOULI 's

EQUATION)

Coming to the data mentioned in the problem,

An Air Compressor is operating at steady rate.

At Inlet, Air enters with Flow rate Q​​​​​​i​​​​​ = 1.2 cumec at pressure P​​​​​​I = 170 KPa and temperature 22o C

At outlet, Air leaves at Pressure P​​​​​​e = 1500 KPa with a velocity V​​​​​​e = 200 m/ sec

Also given Power to the compressor = 60KW and compressor is cooled at the rate of 15 KJ / Kg.

We 've to determine Exit Area or Outlet Area A​​​​​​e.

As the Air Flow is steady Mass flow rate (m) into the compressor = Mass flow leaving the compressor i.e, Conservation of Mass principle.

Mathematically,

m​​​​​i = m​​​​​​e

Please follow the attachment given below:

Thanking you Sir/Madam

  


Related Solutions

Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric...
Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 48 m3/min and exits at 12 bar, 400 K. Heat transfer occurs at a rate of 8 kW from the compressor to its surroundings. Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in kW.
Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in.2, a temperature...
Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in.2, a temperature of 70°F, and a volumetric flow rate of 500 ft3/min. The air velocity in the exit pipe is 700 ft/s and the exit pressure is 133 lbf/in.2 If each unit mass of air passing from inlet to exit undergoes a process described by pv1.34 = constant, determine (a) the exit temperature, in °F, and (b) the diameter of the exit pipe, in inches.
3.70 kg / min of air as ideal gas enters a steady state compressor that runs...
3.70 kg / min of air as ideal gas enters a steady state compressor that runs adiabatically. Air enters P1 = 300 kPa and T1 = 440 K and exits at P2 = 500 kPa. If the isentropic efficiency of the turbine is 0.876, what is the work, in kW?
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 8 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -20oC with...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -20oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 9 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
Saturated water vapor at 300F enters a compressor operating at steady state with a mass flow...
Saturated water vapor at 300F enters a compressor operating at steady state with a mass flow rate of 5 lb/s and is compressed adiabatically to 750 psi. Determine: a) The percent isentropic compressor efficiency. b) The rate of entropy production, in hp/R.
Nitrogen (N2) at 1 bar, 300 K enters a compressor operating at steady state and is...
Nitrogen (N2) at 1 bar, 300 K enters a compressor operating at steady state and is compressed adiabatically to an exit state of 16 bar, 750 K. The N2 is modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the work input, in kJ per kg of N2 flowing, the rate of entropy production, in kJ/K per kg of N2 flowing, and the isentropic compressor efficiency.
Methane (CH4) enters a compressor operating at steady state with a mass flow rate of 170...
Methane (CH4) enters a compressor operating at steady state with a mass flow rate of 170 lbm/hr. The methane enters the compressor at p1 = 15 lbf/in2 , T1 = 80F and exits at p2 = 100 lbf/in2 . The work input to the compressor is 15 hp. Assume ideal gas behavior for the methane with constant specific heats (cp = 0.538 Btu/lbm·R, cv = 0.414 Btu/lbm·R). Kinetic and potential energy effects are negligible and the compressor is insulated 1)Determine...
Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of...
Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of 100 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 20, and the maximum cycle temperature is 1800 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. For a regenerator effectiveness of 86%, determine: (a) the net power developed, in MW. (b) the rate of heat addition in the combustor, in MW. (c)...
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60...
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 17.5, and the maximum cycle temperature is 1950 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. Determine: (a) the net power developed, in kW. (b) the rate of heat addition in the combustor, in kW. (c) the percent thermal efficiency of the cycle....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT