Question

In: Mechanical Engineering

Hot air flows with a mass flow rate of 0.05 kg/s through an insulated square duct...

Hot air flows with a mass flow rate of 0.05 kg/s through an insulated square duct with side of 0.15m, the hot air enters at 103 oC and after a distance of 5m, cools to 85 oC. The heat transfer coefficient between the duct outer surface and the ambient air (Tair = 0 oC) is 6 W/m2 K.

Calculate the heat transfer coefficient between hot air and duct inner wall.

Air Cp = 1.011 KJ/kg K; air k = 0.0306 W/m K, air viscosity = 211.7*10 -7 Ns/m2; air Pr = 0.698

Solutions

Expert Solution

Cross-section area A = 0.15^2 = 0.0225 m^2

Perimeter P = 4*0.15 = 0.6 m

Hydraulic dia D = 4A/P = 4*0.0225 / 0.6 = 0.15 m

Average temperature = (103 + 85) / 2 = 94 deg C = 367 K

Air density at 94 deg C is kg/m3

Average velocity V =  

= 0.05 / (0.96 * 0.0225)

V = 2.31 m/s

Reynolds number

= 0.96 * 2.31 * 0.15 / (211.7*10-7)

Re = 15746

Since Re > 2300, flow is turbulent.

Nusselt number

h * 0.15 / 0.0306 = 0.023 * 157464/5 * 0.6980.3

h = 9.6 W/m2/K


Related Solutions

3) Air flows steadily at the rate of 0.4 kg/s through an air compressor, entering at...
3) Air flows steadily at the rate of 0.4 kg/s through an air compressor, entering at 6 m/s with a pressure of 1 bar and a specific volume of 0.85 m3/kg, and leaving at 4.5 m/s with       a pressure of 6.9 bar and a specific volume of 0.16 m3/kg. The internal energy of air leaving is 88 kJ/kg greater than that of the air entering. Cooling water in a jacket surrounding the cylinder absorbs heat from the air at...
Air flows through a heating duct with a square cross-section with 5-inch sides at a speed...
Air flows through a heating duct with a square cross-section with 5-inch sides at a speed of 5.3 ft/s. Just before reaching an outlet in the floor of a room, the duct widens to assume a square cross-section with sides equal to 13 inches. Compute the speed of the air flowing into the room (in ft/s), assuming that we can treat the air as an incompressible fluid. Answer should be in Ft/s
Consider the following combined cycle. The mass flow rate of air is 73 kg/s. Air enters...
Consider the following combined cycle. The mass flow rate of air is 73 kg/s. Air enters the compressor at state 1 with Patm =1 atm and Tamb = 20°C. The compressor has a pressure ratio of 7.5 and an efficiency ?c = 0.85. Air enters the combustor and is heated to a temperature TH = 1250°C. The turbine has an efficiency of ?t,1 = 0.87. The air leaving the turbine enters the steam boiler where it transfers heat to the...
The air mass flow rate of a jet engine is 10 kg/s. The stagnation enthalpy at...
The air mass flow rate of a jet engine is 10 kg/s. The stagnation enthalpy at the exit of the turbine is 918 kJ/kg and the excess air is 4.5. (a) What should be the mass flow rate of fuel injected in the afterburner, such that the stagnation enthalpy at the end of the afterburner is 1700 kJ/kg? (b) What is the excess air in the afterburner? (c) What is the maximum temperature in the afterburner?
Air flows through a short duct with a smooth inside surface and gradually changing flow area....
Air flows through a short duct with a smooth inside surface and gradually changing flow area. The measured flow rate is equal to 288 lbm/min. At the duct inlet, the temperature is equal to 82 deg F, and the pressure is equal to 15 psia. The inlet velocity is equal to 924 ft/s. At the duct exit, the pressure is equal to 21.7 psia. (I.) Calculate the cross-sectional flow area of the duct inlet. (II.) Estimate the temperature and velocity...
Air flows through a constant area duct. The pressure and temperature of the air at the...
Air flows through a constant area duct. The pressure and temperature of the air at the inlet to the duct are P1 = 100 kPa absolute, and T1 = 298 K, respectively. Inlet Mach number is M1 = 0.1. Heat is transferred to the air as it flows through the duct and as a result the Mach number at the exit increases. Write a Matlab code and plot the following: a) Find the pressure and temperature at the exit, while...
Saturated vapor steam enters a well-insulated turbine at 300oC. The mass flow rate is 1.00 kg/s...
Saturated vapor steam enters a well-insulated turbine at 300oC. The mass flow rate is 1.00 kg/s and the exit pressure is 50 kPa. Determine the final state of the steam if the turbine power output is 400 kW. a). What is the amount of heat transfer in or out the turbine ? b). Explain or show your calculation for your answer in a).    c). What is the substance that you use to look for pure substance properties ? d)....
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the...
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the stagnation temperature is 90°C. If the Mach number at the exit is 0.3, determine the direction and the rate of heat transfer. For the same conditions at the inlet, determine the amount of heat that must be transferred to the system if the flow is to be sonic at the exit of the duct.
Air flows through this tube at a rate of 1400cm3/s . Assume that air is an...
Air flows through this tube at a rate of 1400cm3/s . Assume that air is an ideal fluid. What is the height h of mercury in the right side of the U-tube?
At steady state, air at 200 kPa, 330 K, and mass flow rate of 0.5 kg/s...
At steady state, air at 200 kPa, 330 K, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. The inlet cross-sectional area is 6 cm2. At the duct exit, the pressure of the air is 100 kPa and the velocity is 250 m/s. Neglecting potential energy effects and modeling air as an ideal gas with constant cp = 1.008 kJ/kg · K, determine: (a) the velocity of the air at the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT