Question

In: Physics

A converging lens (f = 11.7 cm) is located 26.6 cm to the left of a...

A converging lens (f = 11.7 cm) is located 26.6 cm to the left of a diverging lens (f = -5.42 cm). A postage stamp is placed 39.7 cm to the left of the converging lens. (a)Locate the final image of the stamp relative to the diverging lens. (b) Find the overall magnification.

Solutions

Expert Solution

For converging lens ::

f = 11.7 cm

do = distance of stamp = 39.7 cm

di = image distance

using the lens equation

1/do + 1/di = 1/f

1/39.7 + 1/di = 1/11.7

di = 16.6 cm to the right of converging lens

d = distance between two lenses = 26.6 cm

For diverging lens :

Image formed by converging lens acts as the object for diverging lens

so d'o = object distance for diverging = 26.6 - 16.6 = 10 cm

f = - 5.42 cm

using the lens equation

1/d'o + 1/d'i = 1/f

1/10 + 1/d'i = 1/(-5.42)

di' = - 3.5 cm to the left of diverging lens

b)

For converging lens

hi = height of image

ho = height of object

using the formula

hi / ho = - di/do

hi / ho = - 16.6/39.7

hi = - 0.42 ho          eq-1

for diverging lens

height of object = height of image formed by converging lens = h'o = hi = - 0.42 ho

height of image = h'i

using the equation

h'i / h'o = - di/do

h'i / h'o = - (-3.5/10)

h'i / (-0.42 ho) = 0.35

h'i / ho = - 0.147

m = - 0.147


Related Solutions

A converging lens (f1 = 24.0 cm) is located 56.0 cm to the left of a...
A converging lens (f1 = 24.0 cm) is located 56.0 cm to the left of a diverging lens (f2 = -28.0 cm). An object is placed to the left of the converging lens, and the final image produced by the two-lens combination lies 20.4 cm to the left of the diverging lens. How far is the object from the converging lens? do1 =
A 1.4-cm-tall object is located 3.0cm to the left of a converging lens with a focal...
A 1.4-cm-tall object is located 3.0cm to the left of a converging lens with a focal length of 4.0cm . A diverging lens, of focal length -7.4cm, is 14cm to the right of the first lens. Find the position of the final image. s2` = -5.7 cm Find the size of the final image. h2` = ? Find the orientation of the final image. a) real, upright b) real, inverted c) virtual, upright d) virtual, inverted
A diverging lens (f = –11.0 cm) is located 24.0 cm to the left of a...
A diverging lens (f = –11.0 cm) is located 24.0 cm to the left of a converging lens (f = 35.0 cm). A 3.00-cm-tall object stands to the left of the diverging lens, exactly at its focal point. (a) Determine the distance of the final image relative to the converging lens. (b) What is the height of the final image?
An object 2.00 cm high is placed 30.8 cm to the left of a converging lens...
An object 2.00 cm high is placed 30.8 cm to the left of a converging lens having a focal length of 25.8 cm. A diverging lens having a focal length of −20.0 cm is placed 110 cm to the right of the converging lens. (Use the correct sign conventions for the following answers.) (a) Determine the final position and magnification of the final image. (Give the final position as the image distance from the second lens.) final position :__________ cm...
A 1.00 cm-high object is placed 3.40 cm to the left of a converging lens of...
A 1.00 cm-high object is placed 3.40 cm to the left of a converging lens of focal length 8.95 cm. A diverging lens of focal length −16.00 cm is 6.00 cm to the right of the converging lens. Find the position and height of the final image. position Take the image formed by the first lens to be the object for the second lens and apply the lens equation to each lens to locate the final image. cm  ---Select--- behind the...
An object is placed 49 cm to the left of a converging lens of focal length...
An object is placed 49 cm to the left of a converging lens of focal length 21 cm. A diverging lens of focal length − 29 cm is located 10.3 cm to the right of the first lens. (Consider the lenses as thin lenses). a) Where is the final image with respect to the second lens? b)What is the linear magnification of the final image?
An object is placed 35.5 cm to the left of a converging lens of focal length...
An object is placed 35.5 cm to the left of a converging lens of focal length 18.8 cm. A second lens, which is diverging and has a focal length of -88.8 cm is placed at a certain distance d to the right of the first lens. A) where is the image of the object formed by the first lens and what is its magnification? B) If the distance d=53.6 cm, where is the final image of the object? What are...
A 1.00-cm-high object is placed 3.95 cm to the left of a converging lens of focal...
A 1.00-cm-high object is placed 3.95 cm to the left of a converging lens of focal length 9.00 cm. A diverging lens of focal length −16.00 cm is 6.00 cm to the right of the converging lens. Find the position and height of the final image.
a converging lens (f=20cm) and a second converging lens (f=30cm) are placed 80cm apart, and an...
a converging lens (f=20cm) and a second converging lens (f=30cm) are placed 80cm apart, and an object is placed 30cm in front of the first lens. Objects height is 2cm. What is the total magnification of the system?
A converging lens of focal length 19.3 cm is separated by 49.3 cm from a converging...
A converging lens of focal length 19.3 cm is separated by 49.3 cm from a converging lens of the focal length 4.53 cm. Find the position of the final image with respect to the second lens of an object placed 38.6 cm in front the first lens. Answer in units of cm. 021 (part 2 of 3) 10.0 points If the height of the object is 1.7 cm, what is the height of the final image? Answer in units of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT