Question

In: Physics

The process of obtaining work through the expansion of the gas includes isothermal expansion and insulation...

The process of obtaining work through the expansion of the gas includes isothermal expansion and insulation expansion.

Why does the isothermal expansion work more than insulation expansion, even if the final volume and the initial volume are the same in the process of reversible expansion?

Solutions

Expert Solution


Related Solutions

An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes...
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes from an initial volume of 227.5×10−6 m3 to a final volume of 101.0×10−6 m3. If 8890 J is released by the gas during this process, what are the temperature ? and the final pressure ?? of the gas?
An ideal gas is brought through an isothermal compression process. The 3.00 mol of gas goes...
An ideal gas is brought through an isothermal compression process. The 3.00 mol of gas goes from an initial volume of 222.0 × 10 − 6 m 3 to a final volume of 123.5 × 10 − 6 m 3 . If 7.60 × 10 3 J is released by the gas during this process, what are the temperature T and the final pressure p f of the gas
An ideal gas undergoes an isothermal expansion from one state to another.  In this process determine the...
An ideal gas undergoes an isothermal expansion from one state to another.  In this process determine the following (using the sign conventions on page 413): Q = 0, Q > 0 or Q < 0 W = 0, W > 0 or W < 0 ΔU = 0, ΔU > 0 or ΔU < 0 An ideal gas undergoes an isothermal process.  Which of the following are true (may be more than one):  a) No heat is added or removed from the gas,...
4). (a). Calculate an expression for the work done during an isothermal, reversible expansion for a...
4). (a). Calculate an expression for the work done during an isothermal, reversible expansion for a gas which is described using the van der Waals equation of state. (b). The van der Waals constants for a gas are a = 506.5 kPa L2 mol2 and b = 6.0x10−2 L mol−1. Determine the work done by 2.0 moles of a gas that expands from 1.5 L to 10 L at 325 K. (c). The a constant is attributed to attractive forces...
An ideal gas is taken through a complete cycle in three steps: adiabatic expansion with work...
An ideal gas is taken through a complete cycle in three steps: adiabatic expansion with work equal to I25 J, isothermal contraction at 325 K, and increase in pressure at constant volume. (a) Draw a p-V diagram for the three steps. (b) How much energy is transferred as heat in step 3, and (c) is it transferred to or from the gas?
Calculate the work done by the adiabatic expansion between the same volumes used in the isothermal...
Calculate the work done by the adiabatic expansion between the same volumes used in the isothermal expansion: 2 m3 to 5 m3 for both the a.) irreversible and b.) reversible processes. Use a monoatomic ideal gas: CV=3R/2 (bar above CV); P1 = 5 Pa; take T1 to be 300K
Calculate deltaS total for the isothermal irreversible free expansion of 1.00 mol of ideal gas from...
Calculate deltaS total for the isothermal irreversible free expansion of 1.00 mol of ideal gas from 8.0 L to 20.0 L at 298 K
Explain and discuss another experiment than (Verification of the Ideal Gas Equation using an isothermal expansion...
Explain and discuss another experiment than (Verification of the Ideal Gas Equation using an isothermal expansion process Experiment) that can be conducted to verify the idea gas equation.
2 kilograms of ideal gas air undergoes an isothermal expansion from 3MPa and 300K to 1Mpa....
2 kilograms of ideal gas air undergoes an isothermal expansion from 3MPa and 300K to 1Mpa. Determine the work done, the change in specific internal energy, and the heat transferred.
Derive an expression for the reversible isothermal work done on n moles of gas at temperature...
Derive an expression for the reversible isothermal work done on n moles of gas at temperature T if the volume changes from V1 to V2 and the gas obeys van der Walls’ equation.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT