Question

In: Chemistry

2 kilograms of ideal gas air undergoes an isothermal expansion from 3MPa and 300K to 1Mpa....

2 kilograms of ideal gas air undergoes an isothermal expansion from 3MPa and 300K to 1Mpa. Determine the work done, the change in specific internal energy, and the heat transferred.

Solutions

Expert Solution

N moles of air in 2kg mass

21% O2 and 78% N2. (The 1% noble gases will be of no consequence here).
O2 mol.mass = 32g/mol x 0.21 = 6.72 moles.
N2 mol.mass = 28g/mol. x 0.78 = 21.84 moles.
Total = 28.56 g/mol.

no of moles in 2000grams of air = 2000/28.56 = 70.02 moles

N= m / mass per mole

- NRTln(p1/p2) = 70.2(8.314) * 300 ln(3) = -192.36 Kj

P1 = NRT/ V1

V1 = NRT/ P1

V2 = NRT/P2

By convention, work is defined as the work the system does on its environment. If, for example, the system expands by a piston moving in the direction of force applied by the internal pressure of a gas, then the work is counted as negative, and as this work is done by using internal energy of the system, the result is that the internal energy decreases. Conversely, if the environment does work on the system so that its internal energy increases, the work is counted as positive.

In an Isothermal process the temperature is constant. Hence, the internal energy is constant, and the net change in internal energy is ZERO

t

heat transfered Q = W


Related Solutions

An ideal gas undergoes an isothermal expansion from one state to another.  In this process determine the...
An ideal gas undergoes an isothermal expansion from one state to another.  In this process determine the following (using the sign conventions on page 413): Q = 0, Q > 0 or Q < 0 W = 0, W > 0 or W < 0 ΔU = 0, ΔU > 0 or ΔU < 0 An ideal gas undergoes an isothermal process.  Which of the following are true (may be more than one):  a) No heat is added or removed from the gas,...
Calculate deltaS total for the isothermal irreversible free expansion of 1.00 mol of ideal gas from...
Calculate deltaS total for the isothermal irreversible free expansion of 1.00 mol of ideal gas from 8.0 L to 20.0 L at 298 K
(a)Air, which can be assumed to behave as an ideal gas, undergoes a process from 150kPa...
(a)Air, which can be assumed to behave as an ideal gas, undergoes a process from 150kPa and 400K to 600kPa and 500K within a piston cylinder. Can this process occur adiabatically? (Think about what the limitations on ???? are to answer this question). (b)Now consider air which is compressed in an air compressor adiabatically from 150kPa and 400K to 1000K and 600kPa. It enters the air compressor with a mass flow rate of 1kg/s. Determine the rate of entropy produced...
For the following, assume air is an ideal gas with constant specific heats at 300K. Find...
For the following, assume air is an ideal gas with constant specific heats at 300K. Find the work and heat transfer and state whether they are into or out of the air. In an open system, air is heated at constant pressure from 27°C, 400 kPa to 500K. w = 0 kJ/kg, q = 201 kJ/kg In a closed system, air is heated at constant pressure from 27°C, 100 kPa to 500K. w = 57.4 kJ/kg, q = 201 kJ/kg
Nitrogen undergoes an isothermal process from 100 kPa to 500 kPa, T = 300K. How much...
Nitrogen undergoes an isothermal process from 100 kPa to 500 kPa, T = 300K. How much specific work was required for this process?
A 2.00 mole sample of Ar undergoes an isothermal reversible expansion from an initial volume of...
A 2.00 mole sample of Ar undergoes an isothermal reversible expansion from an initial volume of 2.00 L to a final volume of 85.0 L at 313 K . a) Calculate the work done in this process using the ideal gas equation of state. b) Calculate the work done in this process using the van der Waals equation of state. c) What percentage of the work done by the van der Waals gas arises from the attractive potential?
a) Calculate the change in entropy on heating an ideal gas from 300K to 500K at...
a) Calculate the change in entropy on heating an ideal gas from 300K to 500K at constant pressure. b) Calculate the change in entropy on heating an ideal gas from 300K to 500K at constant volume. c) why these answers are different. Please explain each steps.
Explain and discuss another experiment than (Verification of the Ideal Gas Equation using an isothermal expansion...
Explain and discuss another experiment than (Verification of the Ideal Gas Equation using an isothermal expansion process Experiment) that can be conducted to verify the idea gas equation.
A gas undergoes an isothermal expansion from V1=1.4L followed by isobaric compression, p=cst. if p1=4.4atm, p2=2.2atm→?Nm2,...
A gas undergoes an isothermal expansion from V1=1.4L followed by isobaric compression, p=cst. if p1=4.4atm, p2=2.2atm→?Nm2, calculate the total work done by the gas. Hint: W=∫dW=∫pdV=∫nRTVdV
Four kilograms of steam in a piston/cylinder device at 400 kPa and 175 °C undergoes isothermal...
Four kilograms of steam in a piston/cylinder device at 400 kPa and 175 °C undergoes isothermal and mechanically reversible process to a final pressure such that the steam is completely condensed (i.e., became a saturated liquid). Determine Q and W for this process: (b) Using generalized correlations and Equations (6.70 – 6.74). Comment on the accuracy of your answer. [Answer: Q = -9,461 kJ, W = 1494.9 kJ]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT